Skip to main content
Log in

Energy-efficient cognitive access approach to convergence communications

  • Research Paper
  • Special Focus on Convergence Communications
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This article studies the cognitive access in convergence communications. Convergence communications provide upper-layer applications with uniform communication service, converging different lower-layer networks into a uniform access pattern such as all-IP communications. As an import access in convergence communications, the cognitive access provides users with a flexible and dynamic access to networks. In this article, we do not only take into account the spectrum usage of convergence communication networks, but also consider theirs energy efficiency. An energy-efficient access algorithm is proposed to improve network performance and efficiency. Different from the existing cognitive access, we regard energy efficiency as the optimal objective to turn the energy-efficient cognitive access into an optimal problem. The collision avoidance and sleeping mechanisms are used to reduce energy consumption and raise network throughput. The utility function is proposed to maximize networks’ energy efficiency and then achieve the energy-efficient cognitive access. Simulation results show that the proposed approach is effective and feasible, which can significantly improve networks’ energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xing Y, Mathur C, Haleem M, et a1. Dynamic spectrum access with QoS and interference temperature constraints. IEEE Trans Mob Comput, 2007, 6: 423–433

    Article  Google Scholar 

  2. Lin Y, Liu K, Hsieh H. On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Trans Mob Comput, 2013, 12: 461–474

    Article  Google Scholar 

  3. Jiang D, Wang X, Guo L, et al. Accurate estimation of large-scale IP traffic matrix. AEU-Int J Electron Commun, 2011, 65: 75–86

    Article  Google Scholar 

  4. Zhang Z, Long K, Wang J, et al. On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Commun Surv Tut, 2013, 16: 1–25

    Google Scholar 

  5. Zhang Z, Long K, Wang J. Self-organization paradigms and optimization approaches for cognitive radio technologies: a survey. IEEE Wirel Commun, 2013, 20: 36–42

    Article  Google Scholar 

  6. Guo L. LSSP: a novel local segment-shared protection for multi-domain optical mesh networks. Comput Commun, 2007, 30: 1794–1801

    Article  Google Scholar 

  7. Jiang D, Wang X, Guo L. Mahalanobis distance-based traffic matrix estimation. Eur Trans Telecommun, 2010, 21: 195–201

    Article  Google Scholar 

  8. Xing Y, Chandramouli R, Mangold S. Dynamic spectrum access in open spectrum wireless networks. IEEE J Sel Area Commun, 2006, 26: 626–637

    Article  Google Scholar 

  9. Zhang Z, Zhang W, Tellambura C. Cooperative OFDM channel estimation in the presence of frequency offsets. IEEE Trans Veh Technol, 2009, 58: 3447–3459

    Article  Google Scholar 

  10. Zhang Z, Long K, Zhao M, et al. Joint frame synchronization and frequency offset estimation in OFDM systems. IEEE Trans Broadcast, 2005, 51: 389–394

    Article  Google Scholar 

  11. Xiang J, Zhang Y, Skeie T. Medium access control protocols in cognitive radio networks. Wirel Commun Mob Comput, 2009, 10: 31–49

    Article  Google Scholar 

  12. Jiang D, Xu Z, Zhang P, et al. A transform domain-based anomaly detection approach to network-wide traffic. J Netw Comput Appl, 2013. in press

    Google Scholar 

  13. Huang S, Liu X, Ding Z. Optimal sensing-transmission structure for dynamic spectrum access. In: Proceedings of INFOCOM, Rio de Janeiro, 2009. 2295–2303

    Google Scholar 

  14. Zhang Z, Jiang W, Zhou H, et al. High accuracy frequency offset correction with adjustable acquisition range in OFDM systems. IEEE Trans Wirel Commun, 2005, 4: 228–237

    Article  Google Scholar 

  15. Zhang Z, Zhao M, Zhou H, et al. Frequency offset estimation with fast acquisition in OFDM system. IEEE Commun Lett, 2004, 3: 171–173

    Article  Google Scholar 

  16. Guo L, Li L. A novel survivable routing algorithm with partial shared-risk link groups (SRLG)-disjoint protection based on differentiated reliability constraints in WDM optical mesh networks. J Lightwave Technol, 2007, 25: 1410–1415

    Article  Google Scholar 

  17. Jiang D, Xu Z, Chen Z, et al. Joint time-frequency sparse estimation of large-scale network traffic. Comput Netw, 2011, 55: 3533–3547

    Article  Google Scholar 

  18. Huang S, Liu X, Ding Z. Optimal transmission strategies for dynamic spectrum access in cognitive radio networks. IEEE Trans Mob Comput, 2009, 8: 1636–1648

    Article  Google Scholar 

  19. Rashid M, Bhargava V, Despins C, et al. Medium access control in distributed cognitive radio networks. IEEE Wirel Commun, 2011, 18: 41–51

    Article  Google Scholar 

  20. Jung E, Liu X. Opportunistic spectrum access in multiple primary user environments under the packet collision constraint. IEEE Trans Netw, 2012, 20: 501–514

    Article  Google Scholar 

  21. Zhang X, Su H. CREAM-MAC: cognitive radio-enabled multi-channel MAC protocol over dynamic spectrum access networks. IEEE J Sel Top Signal Process, 2011, 5: 110–123

    Article  Google Scholar 

  22. Li L, Zhou X. Energy-efficient transmission in cognitive radio networks. In: Proceedings of CCNC, Las Vegas, 2010. 1–5

    Google Scholar 

  23. Xie R, Yu F, Ji H. Energy-efficient spectrum sharing and power allocation in cognitive radio femtocell networks. In: Proceedings of INFOCOM, Orlando, 2012. 1665–1673

    Google Scholar 

  24. Ngallemo H, Ajib W, Elbiaze H. Dynamic spectrum access analysis in a multi-user cognitive radio network using Markov chains. In: Proceedings of ICNC, Maui, 2012. 1113–1117

    Google Scholar 

  25. Zhao Q, Tong L, Swami A, et al Decentralized cognitive MAC for opportunistic spectrum access in Ad-Hoc networks: a POMDP framework. IEEE J Sel Area Commun, 2008, 25: 589–600

    Article  MATH  Google Scholar 

  26. Ma L, Shen C, Xin C. CONI: credit-based overlay and interweave dynamic spectrum access protocol for multi-hop cognitive radio networks. In: Proceedings of GLOBECOM, Houston, 2011. 1–6

    Google Scholar 

  27. Jia J, Zhang Q, Shen X. HC-MAC: a hardware-constrained cognitive MAC for efficiency spectrum management. IEEE J Sel Area Commun, 2008, 26: 106–117

    Article  Google Scholar 

  28. Sun Z, Glenn J, Bradford J, et al. Sequence detection algorithms for PHY-layer sensing in dynamic spectrum access networks. IEEE J Sel Top Signal Process, 2011, 5: 97–109

    Article  Google Scholar 

  29. Gatsis N, Marques A, Giannakis G. Power control for cooperative dynamic spectrum access networks with diverse QoS constraints. IEEE Trans Commun, 2010, 58: 933–944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DingDe Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Qin, W., Tang, Q. et al. Energy-efficient cognitive access approach to convergence communications. Sci. China Inf. Sci. 57, 1–12 (2014). https://doi.org/10.1007/s11432-014-5081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5081-0

Keywords

Navigation