Skip to main content
Log in

Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics

  • Published:
Science in China Series G Aims and scope Submit manuscript

Abstract

From point of view of physics, especially of mechanics, we briefly introduce fractional operators (with emphasis on fractional calculus and fractional differential equations) used for describing intermediate processes and critical phenomena in physics and mechanics, their progress in theory and methods and their applications to modern mechanics. Some authors’ researches in this area in recent years are included. Finally, prospects and evaluation for this subject are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldham K B, Spanier J. The Fractional Calculus. New York-London: Academic Press, 1974

    MATH  Google Scholar 

  2. Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives: Theory and Applications. Switzerland: Gordon and Breach Science Publishers, 1993

    MATH  Google Scholar 

  3. Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations. New York: John Wiley & Sons Inc., 1993

    MATH  Google Scholar 

  4. Mandelbrot B B. The Fractal Geometry of Nature. New York: W. H. Freeman & Co., 1982

    MATH  Google Scholar 

  5. Ross B. Fractional calculus and its applications. In: Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1975, 457

    Google Scholar 

  6. Butzer P L, Westphal U. An introduction to fractional calculus. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000. 1–85

    Google Scholar 

  7. Hilfer R. Fractional time evolution. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000

    Google Scholar 

  8. Mandelbrot B B, Ness J W. Fractional Brownian motions, fractional noises and applications. SIAM Rev, 1968, 10: 422–437

    Article  MathSciNet  MATH  Google Scholar 

  9. Mandelbrot B B. Fractals, Form and Chance and Dimension. San Francisco: W. H. Freeman & Co., 1977

    MATH  Google Scholar 

  10. Mandelbrot B B. Is nature fractals? Science, 1998, 279: 5352

    Google Scholar 

  11. Mandelbrot B B. Some mathematical questions arising in fractal geometry. In: Pier J-P, Boston B, eds. Development of Mathematics 1950–2000. Berlin: Birkhäuser-Verlag, 2000. 795–811

    Google Scholar 

  12. Mandelbrot B B. Topics on fractals in mathematics and physics. In: Louis H Y Chen, et al., eds. Challenges for the 21st Century Fundamental Sciences: Mathematics and Theoretical Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000

    Google Scholar 

  13. Richardson L F. Atmospheric diffusion shown on a distance-neighbour graph. Proc Roy Soc London A, 1926, 110: 709–737

    ADS  Google Scholar 

  14. Ghil M, Benzi R, Parisi G. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Amsterdam: North-Holland, 1985

    Google Scholar 

  15. Meakin P. Fractals, scaling and growth far from equilibrium. In: Cambridge Nonlinear Science Series 5. Cambridge: Cambridge University Press, 1998

    Google Scholar 

  16. Batchelor G K, Moffatt H K, Worster M G. Perspectives in Fluid Dynamics—A Collective Introduction to Current Research. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  17. Frisch U. Turbulence. Cambridge: Cambridge University Press, 1995

    MATH  Google Scholar 

  18. Pier J-P, Boston B, eds. Development of Mathematics 1950–2000. Berlin: Birkhäuser-Verlag, 2000

    MATH  Google Scholar 

  19. Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 2000, 339: 1–77

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Fikhtengolz G M. Course of Differential and Integral. Beijing: People Education Press, 1964. 431–433

    Google Scholar 

  21. Kolwankar K M. Fractional differentiability of nowhere differentiable functions and dimensions. A dissertation for the degree of doctor of philosophy. University of Pune, 1997

  22. West B J, Bologna M, Grigolini P. Physics of Fractal Operators. New York: Springer-Verlag Inc., 2003

    Google Scholar 

  23. Nonnemacher T F, Metzler R. Applications of fractional calculus techniques to problems in biophysics. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000. 377–427

    Google Scholar 

  24. Family F, Daoud M, Herrmann H J, et al. Scalling and Disordered Systems. Singapore: World Scientific Publishing Co Pte Ltd, 2002

    Google Scholar 

  25. Meakin P. Fractals, scaling and growth far from equilibrium. In: Cambridge Nonlinear Science Series 5. Cambridge: Cambridge University Press, 1998

    Google Scholar 

  26. Shlesinger M F. Fractal time and 1/f noise in complex systems. Ann N Y Acad Sci, 1987, 504

  27. Schroeder M. Fractals, Chaos, Power Laws. San Francisco: W. H. Freeman & Co., 1991

    MATH  Google Scholar 

  28. Schiessel H, Friedrich C, Blumen A. Applications to problems in polymer physics and rheology. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000. 331–376

    Google Scholar 

  29. Glöckle W G, Nonenmacher T F. Fractional integral operators and fox function in the theory of viscoelasticity. Macromolecules, 1991, 24: 6426–6434

    Article  ADS  Google Scholar 

  30. Nonnenmacher T F, Metzler R. On the Riemann-Liouville fractional calculus and some recent applications. Fractals, 1995, 3(3): 557–566

    MathSciNet  MATH  Google Scholar 

  31. Friedrich C. Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol Acta, 1991, 30: 151–158

    Article  Google Scholar 

  32. Schiessel H, Metzler R, Nonnenmacher T F. Generalized viscoelastic models: Their fractional equations with solutions. J Phys A: Math Gen, 1995, 28: 6567–6584

    Article  ADS  MATH  Google Scholar 

  33. Glöckle W G, Nonnenmacher T F. Fox function representation of Non-Debye relaxation processes. J Stat Phys, 1993, 71: 741–757

    Article  MATH  ADS  Google Scholar 

  34. Hilfer R. Fractional calculus and regular variation in thermodynamics. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000. 430–463

    Google Scholar 

  35. El-Sayed A M A, Gaafar F M. Fractional calculus and some intermediate physical processes. Applied Mathematics and Computation, 2003, 144: 117–126

    Article  MathSciNet  MATH  Google Scholar 

  36. Aharony A, Asikainen J. Critical phenomena. In: Family F, Daoud M, Herrmann H J, Stanley H E, eds. Scaling and Disordered Systems. Singapore: World Scientific Publishing Co Pte Ltd, 2002. 1–79

    Google Scholar 

  37. Xu M Y, Tan W C. Representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions. Science in China, Series G, 2003, 46(2): 145–157

    Article  Google Scholar 

  38. Lam L. Introduction to Nonlinear Physics. New York: Springer-Verlag Inc., 1997

    MATH  Google Scholar 

  39. Cowan G A, Pines D, Meltzer D. Complexity: Metaphors, Models and Reality. Menlo Park: Addison-Wesley, 1994

    MATH  Google Scholar 

  40. Rossikhin Y A, Shitikova M V. A new method for solving dynamic problems of fractional derivative viscoelasticity. Int J Eng Sci, 2000, 39: 149–176

    Article  Google Scholar 

  41. Rossikhin Y A, Shitikova M V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev, 1997, 50(1): 15–67

    Article  MathSciNet  Google Scholar 

  42. Mathai A M, Saxena R K. The H-function with Applications in Statistics and Other Disciplines. New Delhi: Wiley Eastern Limited, 1978

    MATH  Google Scholar 

  43. Srivastava H M, Gupta K C, Goyal S P. The H-functions of One and Two Variables with Applications. New Delhi: South Asian Publishers, 1982

    MATH  Google Scholar 

  44. Podlubny I. Fractional Differential Equations. San Diego: Academic Press, 1999

    MATH  Google Scholar 

  45. Erdelyi A. Higher Transcendental Functions. New York: Mc Graw-Hill, 1953

    Google Scholar 

  46. Glöckle W G, Nonenmacher T F. Fractional integral operators and fox function in the theory of viscoelasticity. Macromolecules, 1991, 24: 6426–6434

    Article  ADS  Google Scholar 

  47. Gorenflo R, Luchko Y, Mainardi F. Wright functions as scale-invariant solutions of the diffusion-wave equation. J of Comp and App Math, 2000, 118: 175–191

    Article  MathSciNet  MATH  Google Scholar 

  48. Xu M Y, Tan W C. Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion. Sci China Ser A-Math, 2001, 44(11): 1387–1399

    MATH  Google Scholar 

  49. Tan W C, Xu M Y. Unsteady flows of a generalized second grade fluid with fractional derivative model between two parallel plates. Acta Mech Sin, 2004, 20(5): 471–476

    MathSciNet  Google Scholar 

  50. Tan W C, Pan W X, Xu M Y. A note on unsteady flows of a viscoelastic fluid with fractional Maxwell model between two parallel plates. Int J Non-linear Mech, 2003, 38(5): 645–650

    Article  MATH  Google Scholar 

  51. Tan W C, Xu M Y. The impulsive motion of flat plate in a general second grade fluid. Mechanics Research Communication, 2002, 29(1): 3–9

    Article  MathSciNet  MATH  Google Scholar 

  52. Tan W C, Xian F, Wei L. An exact solution of unsteady Couette flow of generalized second grade fluid. Chin Sci Bull, 2002, 47(21): 1783–1785

    Article  MathSciNet  Google Scholar 

  53. Tan W C, Xu M Y. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech Sin, 2002, 18(4): 342–349

    MathSciNet  Google Scholar 

  54. Jin H, Xu M Y. Some notes to “On the axial flow of generalized second order fluid in a pipe”. In: Zhuang F G, Li J C, eds. Recent Advances in Fluid Mechanics, Proc. of 4th Int. Couf. on J. Mech. Beijing: Tsinghua Univ. Press & Springer-Verlag, 2004

    Google Scholar 

  55. Song D Y. Study of rheological characterization of fenugreek gum with modified Maxwell. Chinese J Chem Eng, 2000, 8: 85–88

    Google Scholar 

  56. Tong D K, Wang R H, Yang H S. Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Science in China, Series G, 2005, 48(4): 485–495

    Article  ADS  Google Scholar 

  57. Tong D K, Liu Y S. Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. Inter J of Engn Sci, 2005, 43(3–4): 281–289

    Article  MathSciNet  Google Scholar 

  58. Tong D K, Wang R H. Analysis of the flow of non-Newtonian viscoelastic fluids in fractal reservoir with the fractional derivative. Science in China, Series G, 2004, 47(4): 424–441

    Article  ADS  Google Scholar 

  59. Huang J Q, He G Y, Liu C Q. Analysis of general second-order fluid flow in double cylinder rheometer. Sci China Ser A-Math, 1997, 40(2): 183–190

    Article  MATH  Google Scholar 

  60. Song D Y, Jiang T Q. Study on the constitutive equation with fractional derivative for the viscoelastic fluids — Modified Jeffreys model and its application. Rheologica Acta, 1998, 27: 512–517

    Article  Google Scholar 

  61. Nonnenmacher T F, Metzler R. Applications of fractional calculus techniques to problems in biophysics. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000. 377–427

    Google Scholar 

  62. Xu M Y. Present Situation of Pharmacodynamics in Researches on Biomechanics and Its Applications (in Chinese), Yang Guitong, Jin Chenren, eds. Guangzhou: Hua’nan University of Science and Engineering Press, 1990. 33–37

    Google Scholar 

  63. West B J, Griffin L. Allometric control of human gait. Fractals, 1998, 6: 101–108

    Google Scholar 

  64. FLeury V, Schwartz L. Diffusion limited aggregation from shear stress as a simple model of vasculogenesis. Fractals, 1999, 7: 33–39

    Google Scholar 

  65. Morávek Z, Fiala J. Fractal dynamics in the growth of root. Chaos, Solions and Fractals, 2004, 19: 31–34

    Article  MATH  Google Scholar 

  66. Xu M Y. An analytical solution for the model of drug distribution and absorption in small intestine. Acta Mech Sinica, 1990, 6(4): 316–323

    MATH  ADS  Google Scholar 

  67. Sun T, Meakin P, Jossang T. Minimum energy dissipation and fractal structures of vascular systems. Fractals, 1995, 3(1): 123–153

    MATH  Google Scholar 

  68. Best B J. Fractal Physiology and Chaos in Medicine. New York: World Scientific Publishing Co Pte Ltd, 1993

    Google Scholar 

  69. Su H J, Xu M Y. Generalized visco-elastic model of otolith organs with fractional orders. Chinese J of Biomedical Engineering (in Chinese), 2001, 20(1): 46–52

    Google Scholar 

  70. Liu J G, Xu M Y. Study on a fractional model of viscoelasticity of human cranial bone. Chinese J of Biomedical Engineering (in Chinese), 2005, 24(1): 12–16

    Google Scholar 

  71. Liu J Y, Xu M. Y. An exact solution to the moving boundary problem with fractional anomalous diffusion in drug release devices. ZAMM, 2004, 84(1): 22–28

    Article  MathSciNet  MATH  Google Scholar 

  72. Glöckle W G, Nonenmacher T F. A fractional calculus approach to self-similar protein dynamics. Biophysical Journal, 1995, 68: 46–53

    Article  ADS  Google Scholar 

  73. Tolić-Norrelykke I M, Munteanu E L, Thon G, et al. Anomalous diffusion in living yeast cells. Phys Rev Lett, 2004, 93(7): 078102

    Google Scholar 

  74. Yakushevich L V. Nonlinear dynamics of DNA. In: Christiansen P L, Sorensen M P, Scott A C, eds. Nonlinear Science at the Dawn of the 21st Century. Berlin Heideberg: Springer-Verlag, 2000, 5(19): 373–391

    Google Scholar 

  75. Peng C K, Buldyrev S, Goldberg A L, et al. Long-range correlations in nucleotide sequences. Nature, 1992, 356: 168

    Article  ADS  Google Scholar 

  76. Stanley H E, Buldyrev S, Goldberg A L, et al. Statistical mechanics in biology: How ubiquitous are long-range correlations. Physica A, 1994, 205: 214

    Article  ADS  Google Scholar 

  77. Voss R. Evolution of long-range fractal correlations and 1/fnoise in DNA base sequences. Phys Rev Lett, 1992, 68(25): 3805

    Article  ADS  Google Scholar 

  78. Buldyrev S V, Goldberger A L, Havlin S, et al. Generalized levy-walk model for DNA nucleotide sequences. Phy Rev E, 1993, 47: 4514

    Article  ADS  Google Scholar 

  79. Allegrini P, Buacci M, Grigolini P, et al. Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences. Phys Rev E, 1998, 57: 1–10

    Article  Google Scholar 

  80. Bickel D R, West B J. Multiplicative and fractal processes in DNA evolution. Fractals, 1998, 6: 211–217

    Google Scholar 

  81. Yu Z G, Anh V, Lau K S. Measure representation and multifractal analysis of complete genomes. Phys Rev E, 2002, 64: 031903

    Google Scholar 

  82. Yakushevich L V. Nonlinear Physics of DNA. New York: John Wiley, 1998

    MATH  Google Scholar 

  83. Mainardi F. Fractional relaxation-oscillation and fractional diffusion wave phenomena. Chaos, Solitons & Fractals, 1996, 7(9): 1461–1477

    Article  MATH  MathSciNet  Google Scholar 

  84. Carpinteri A, Mainardi F. Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer Wien, 1997

    MATH  Google Scholar 

  85. Henry B I, Wearne S L. Fractional reaction-diffusion. Physica A, 2000, 276(3): 448–455

    Article  MathSciNet  ADS  Google Scholar 

  86. Nakayama T, Yakubo K. Fractal Concepts in Condensed Matter Physics. Berlin Heidelberg: Springer-Verlag, 2003

    Google Scholar 

  87. Compte A. Stochastic foundations of fractional dynamics. Phy Rev E, 1996, 53(4): 4191–4193

    Article  ADS  Google Scholar 

  88. Metzler R, Klafter J. From continuous time random walks to fractional diffusion equations. In: The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Physics Reports, 2000, 339: 13–31

  89. Metzler R, Glöckle W G, Nonnenmacher T F. Fractional model equation for anomalous diffusion. Physica A, 1994, 211: 13–24

    Article  ADS  Google Scholar 

  90. Shaughnessy B O, Procaccia I. Analytical solution for diffusion on fractal objects. Phys Rev Lett, 1985, 54: 455

    Article  ADS  Google Scholar 

  91. Silva P C, Silvaa L R, Lenzib E K, et al. Anomalous diffusion and anisotropic nonlinear Fokker-Planck equation. Physica A, 2004, 342: 16–21

    Article  ADS  Google Scholar 

  92. Silva P C, Silvaa L R, Lenzib E K, et al. Fractional and nonlinear diffusion equation: Additional results. Physica A, 2004, 344: 671–676

    Article  ADS  Google Scholar 

  93. Room H E, Giona M. Fractional diffusion equation on fractals: Three-dimensional case and scattering function. J Phy A, 1992, 25: 2107–2117

    Article  MathSciNet  ADS  Google Scholar 

  94. Nonnemacher T F, Metzler R. Applications of fractional calculus technique to problems in biophysics. In: Hilfer R, ed. Applications of Fractional Calculus in Physics. Singapore: World Scientific Publishing Co Pte Ltd, 2000, 378–427

    Google Scholar 

  95. Duan J S, Xu M Y. Concentration Distribution of Fractional Anomalous Diffusion Caused by an Instantaneous Point Source. Applied Math Mech, 2003, 24(11): 1302–1308

    MathSciNet  MATH  Google Scholar 

  96. Jiang X Y, Xu M Y. Analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered fractal media. Int J Non-linear Mechanics, 2006, 41: 156–165

    Article  Google Scholar 

  97. Lenzi E K, Mendes G A, Mendes R S, et al. Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption. Phys Rev E, 2003, 67: 051109

    Google Scholar 

  98. Bologna M, Tsallis C, Grigolini P. Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions. Phys Rev E, 2000, 62: 2213–2218

    Article  ADS  Google Scholar 

  99. Buckwar E, Luchko Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. Journal of Mathematical Analysis & Applications, 1998, 227: 81–97

    Article  MathSciNet  MATH  Google Scholar 

  100. Elhanbaly A. The explicit solutions of a class of diffusion equation. Chaos, Solitons & Fractals, 2002, 14: 965–974

    Article  MATH  MathSciNet  Google Scholar 

  101. Richard G. Diffusion Phenomena: Cases and Studied. New York: Kluwer Academic/Plenum Publishers, 2001

    Google Scholar 

  102. Witten T A, Sander L M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett, 1981, 47: 1400–1403

    Article  ADS  Google Scholar 

  103. Vicsek T. Fractal growth phenomena. 2nd ed. Singapore: World Scientific Publishing Co Pte Ltd, 1992

    MATH  Google Scholar 

  104. Sreenivasan K R. Fractal geometry and multifractal measures in fluid mechanics. In: Lnmley J L, et al., eds. Research Trends in Fluid Dynamics. Woodbury, New York: AIP Press, 2000. 263–285

    Google Scholar 

  105. Meakin P. The growth of fractal aggregates and their fractal measures. In: Domb C, Lebowitz J L, eds. Phase Transitions and Critical Phenomena. New York: Academic Press, 1988. 355–489

    Google Scholar 

  106. Argoul F, Arneodo A, Grasseau G, et al. Self-similarity of diffusion-limited aggregates and electrodeposition clusters. Phys Rev Lett, 1998, 61: 2558

    Article  ADS  Google Scholar 

  107. Evertsz C J G, Mandolbrot B B. Appendix B: Multifractal measure. In: Pettgen H O, Jurgens H, Saupe D, eds. Chaos and Fractals. Berlin: Springer-Verlag, 1992. 921–953

    Google Scholar 

  108. Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys Rev E, 1996, 53: 1890

    Article  MathSciNet  ADS  Google Scholar 

  109. Riewe F. Mechanics with fractional derivatives. Phys Rev E, 1997, 55(3): 3581

    Article  MathSciNet  ADS  Google Scholar 

  110. Flores E, Osler T J. The tautochrone under arbitrary potentials using fractional derivatives. Am J Phys, 1999, 67: 718–722

    Article  ADS  Google Scholar 

  111. Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems. J Math Anal App, 2002, 272: 368–379

    Article  MATH  Google Scholar 

  112. Achar B N N, Hanneken J W, Enck T, et al. Dynamics of the fractional oscillator. Physica A, 2001, 297: 361–367

    Article  MathSciNet  ADS  MATH  Google Scholar 

  113. Laskin N. Fractional quantum mechanics and Lévy path integrals. Phys Lett A, 2000, 268: 298–305

    Article  MATH  MathSciNet  ADS  Google Scholar 

  114. Laskin N. Fractional quantum mechanics. Phys Rev E, 2003, 62(3): 3135–3145

    Article  MathSciNet  ADS  Google Scholar 

  115. Laskin N. Fractals and quantum mechanics. Chaos, 2000, 10(4): 780–790

    Article  MATH  MathSciNet  ADS  Google Scholar 

  116. Laskin N. Fractional Schrödinger equation. Phys Rev E, 2002, 66: 056108

    Google Scholar 

  117. Naber M. Time fractional Schrödinger equation. J of Math Phys, 2004, 45(8): 3339–3352

    Article  MATH  MathSciNet  ADS  Google Scholar 

  118. Sidharth B G. The scaled universe. Chaos, Solitons and Fractals, 2001, 12: 613–616

    Article  MATH  MathSciNet  Google Scholar 

  119. Sixdeniers J M, Penson K A, Solomon A I. Mittag-Leffler coherent states. J Phys A: Math Gen, 1999, 32: 7543–7563

    Article  MathSciNet  ADS  MATH  Google Scholar 

  120. Bolivar A O. Quantization of the anomalous Brownian motion. Phys Lett A, 2003, 307: 229–232

    Article  MATH  MathSciNet  ADS  Google Scholar 

  121. Shepherd K C, Naber M. Fractional differential forms. J Math Phys, 2001, 42: 2203–2212

    Article  MathSciNet  ADS  MATH  Google Scholar 

  122. Durand L. Fractional operators and special functions (I): Bessel functions. J Math Phys, 2003, 44(5): 2250–2265

    Article  MATH  MathSciNet  ADS  Google Scholar 

  123. Durand L. Fractional operators and special functions (II): Legendre functions. J Math Phys, 2003, 44(5): 2266–2292

    Article  MATH  MathSciNet  ADS  Google Scholar 

  124. Carpinteri A, Cornetti P. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons and Fractals, 2003, 13: 85–94

    Article  Google Scholar 

  125. West B J, Bologna M, Grigolini P. Physics of Fractal Operators. New York: Springer-Verlag New York Inc., 2003. 1–35

    Google Scholar 

  126. Rocco A, West B J. Fractional calculus and the evolution of fractal phenomena. Physica A, 1999, 265: 536–546

    Article  Google Scholar 

  127. Turcotte D L. The relationship of fractals in geophysics to “The New Science”. Chaos, Solitons and Fractals, 2004, 19: 255–258

    Article  MATH  Google Scholar 

  128. Bak P, Paczuski M. The dynamics of fractals. Fractals, 1995, 3(3): 415

    MathSciNet  MATH  Google Scholar 

  129. Lindner A, Bonn D, Poire E C, et al. Viscous fingering in non-Newtonian fluids. J Fluid Mech, 2002, 469: 237–256

    Article  MathSciNet  ADS  MATH  Google Scholar 

  130. Wolfram S. A New Kind of Science. Champaign: Wolfram Media, 2002

    MATH  Google Scholar 

  131. Mitchell M. Is the universe a universal computer? Science, 2002, 298: 65–68

    Article  Google Scholar 

  132. Palade L I, Attane P, Huilgol R R, et al. Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models. Inter J Eng Sci, 1999, 37: 315–329

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Mingyu or Tan Wenchang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Tan, W. Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics. SCI CHINA SER G 49, 257–272 (2006). https://doi.org/10.1007/s11433-006-0257-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-006-0257-2

Keywords

Navigation