Skip to main content
Log in

Partition of arbitrary single-qubit information among n recipients via asymmetric (n+1)-qubit W state

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A symmetric and (n, n)-threshold scheme for a sender to partition his/her arbitrary single-qubit information among n recipients is proposed by using a newly constructed asymmetric (n + 1)-qubit W state. Both the scheme in some given scenarios and the new W state are also discussed given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India. New York: IEEE, 1984. 175–179

    Google Scholar 

  2. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Google Scholar 

  4. Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement. Phys Rev A, 1998, 58: 4394–4400

    Article  ADS  MathSciNet  Google Scholar 

  6. Gao T, Yan F L, Li Y C. Optimal controlled teleportation via several kinds of three-qubit states. Sci China Ser G-Phys Mech Astron, 2008, 51: 1529–1556

    Article  ADS  Google Scholar 

  7. Li X H, Deng F G. Controlled teleportation. Front Comput Sci China, 2008, 2: 147–160

    Article  Google Scholar 

  8. Hillery M, Bŭzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  ADS  MathSciNet  Google Scholar 

  9. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168

    Article  ADS  Google Scholar 

  10. Wang W Y, Wang C, Zhang G Y, et al. Arbitrarily long distance quantum communication using inspection and power insertion. Chin Sci Bull, 2009, 54: 158–162

    Article  Google Scholar 

  11. Blakley G R. Safeguarding cryptographic keys. Proceedings of the National Computer Conference, 1979. American Federation of Information Processing Societies Proceedings, 1979, 48. 313–317

    Google Scholar 

  12. Shamir A. How to share a secret. Commun ACM, 1979, 22: 612–613

    Article  MATH  MathSciNet  Google Scholar 

  13. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  ADS  Google Scholar 

  14. Gottesman D. Theory of quantum secret sharing. Phys Rev A, 2000, 61: 042311

    Google Scholar 

  15. Tittel W, Zbinden H, Gisin N. Experimental demonstration of quantum secret sharing. Phys Rev A, 2001, 63: 042301

    Google Scholar 

  16. Chau H F. Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate. Phys Rev A, 2002, 66: 060302

    Google Scholar 

  17. Karimipour V, Bahraminasab A, Bagherinezhad A. Entanglement swapping of generalized cat states and secret sharing. Phys Rev A, 2002, 65: 042320

    Google Scholar 

  18. Bagherinezhad S, Karimipour V. Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers. Phys Rev A, 2003, 67: 044302

    Google Scholar 

  19. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307

    Google Scholar 

  20. Zhang Z J. Multiparty quantum secret sharing of secure direct communication. Phys Lett A, 2005, 342: 60–66

    Article  MATH  ADS  Google Scholar 

  21. Singh S K, Srikanth R. Generalized quantum secret sharing. Phys Rev A, 2005, 71: 012328

    Google Scholar 

  22. Zhang Z J, Man Z X. Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys Rev A, 2005, 72: 022303

    Google Scholar 

  23. Zhang Z J, Li Y, Man Z X. Multiparty quantum secret sharing. Phys Rev A, 2005, 71: 044301

    Google Scholar 

  24. Gordon G, Rigolin G. Generalized quantum-state sharing. Phys Rev A, 2006, 73: 062316

    Google Scholar 

  25. Wang Z Y, Yuan H, Zhang Z J. Three-party qutrit-state sharing. Eur Phys J D, 2007, 41: 371–375

    Article  ADS  MathSciNet  Google Scholar 

  26. Wang Z Y, Liu Y M, Zhang Z J. Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt Commun, 2007, 276: 322–326

    Article  ADS  Google Scholar 

  27. Bandyopadhyay S. Teleportation and secret sharing with pure entangled states. Phys Rev A, 2000, 62: 012308

    Google Scholar 

  28. Hsu L Y. Quantum secret-sharing protocol based on Grover’s algorithm. Phys Rev A, 2003, 68: 022306

    Google Scholar 

  29. Hsu L Y, Li C M. Quantum secret sharing using product states. Phys Rev A, 2005, 71: 022321

    Google Scholar 

  30. Lance A M, Thomas Symul T, Bowen W P, et al. Tripartite quantum state sharing. Phys Rev Lett, 2004, 92: 177903

    Google Scholar 

  31. Deng F G, Zhou H Y, Long G L. Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys Lett A, 2005, 337: 329–334

    Article  MATH  ADS  Google Scholar 

  32. Deng F G, Zhou H Y, Long G L. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302

    Google Scholar 

  33. Zhang Y Q, Jin X R, Zhang S. Secret sharing of quantum information via entanglement swapping in cavity QED. Phys Lett A, 2005, 341: 380–384

    Article  MATH  ADS  Google Scholar 

  34. Deng F G, Li X H, Li C Y, et al. Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys Rev A, 2005, 72: 044301

    Google Scholar 

  35. Deng F G, Li X H, Li C Y et al. Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur Phys J D, 2006, 39: 459–464

    Article  ADS  Google Scholar 

  36. Zhang Z J. Multiparty secret sharing of quantum information via cavity QED. Opt Commun, 2006, 261: 199–202

    Article  ADS  Google Scholar 

  37. Lance A M, Symul T, Bowen W P, et al. Continuous-variable quantum-state sharing via quantum disentanglement. Phys Rev A, 2005, 71: 033814

    Google Scholar 

  38. Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G-Phys Mech Astron, 2007, 50: 572–580

    Article  MATH  ADS  Google Scholar 

  39. Yang Y G, Wen Q Y. Threshold quantum secret sharing between multi-party and multi-party. Sci China Ser G-Phys Mech Astron, 2008, 51: 1308–1315

    Article  MATH  ADS  Google Scholar 

  40. Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 022338

    Google Scholar 

  41. Li X H, Deng F G, Zhou H Y. Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger-Horne-Zeilinger states. Chin Phys Lett, 2007, 24: 1151–1153

    Article  ADS  Google Scholar 

  42. Zhang Z J, Yang J, Man Z X, et al. Multiparty secret sharing of quantum information using and identifying Bell states. Eur Phys J D, 2005, 33: 133–136

    Article  ADS  Google Scholar 

  43. Li Y M, Zhang K S, Peng K C. Multiparty secret sharing of quantum information based on entanglement swapping. Phys Lett A, 2004, 324: 420–424

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Yu Y F, Feng J, Zhan M S. Multi-output programmable quantum processor. Phys Rev A, 2002, 66: 052310

    Google Scholar 

  45. Yu Y F, Feng J, Zhan M S. Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state. Phys Rev A 2003, 68: 024303

    Google Scholar 

  46. Li X H, Zhou P, Li C Y, et al. Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J Phys B, 2006, 39: 1975–1983

    Article  ADS  MathSciNet  Google Scholar 

  47. Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles. Phys Rev Lett, 2001, 86: 910–913

    Article  ADS  Google Scholar 

  48. Dür W, Briegel H J. Stability of macroscopic entanglement under decoherence. Phys Rev Lett, 2004, 92: 180403

    Google Scholar 

  49. Tian D P, Tao Y J, Qin M. Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state. Sci China Ser G-Phys Mech Astron, 2008, 51: 1523–1528

    Article  ADS  Google Scholar 

  50. Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement. Phys Rev Lett, 2006, 96: 060502

    Google Scholar 

  51. Zhang Z J, Liu Y M, Wang D. Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys Lett A, 2007, 372: 28–32

    Article  ADS  Google Scholar 

  52. Dür W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways. Phys Rev A, 2000, 62: 062314

    Google Scholar 

  53. Agrawal P, Pati A. Perfect teleportation and superdense coding with W states. Phys Rev A, 2006, 74: 062320

    Google Scholar 

  54. Zheng S B. Splitting quantum information via W states. Phys Rev A, 2006, 74: 054303

    Google Scholar 

  55. Li L Z, Qiu D W. The states of W-class as shared resources for perfect teleportation and superdense coding. J Phys A-Math Theor, 2007, 40: 10871–10885

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. Zhang Z J, Cheung C Y. Minimal classical communication and measurement complexity for quantum information splitting. J Phys B, 2008, 41: 015503

    Google Scholar 

  57. Zuo X Q, Liu Y M, Zhang W, et al. Minimal classical communication cost and measurement complexity in splitting two-qubit quantum information via asymmetric W states. Int J Quantum Inf, 2008, 6: 1245–1253

    Article  MATH  Google Scholar 

  58. Pan G X, Liu Y M, Wang Z Y, et al. Tripartite splitting arbitrary 2-qubit quantum information by using two asymmetric W states. Common Theor Phys, 2009, 51: 227–231

    Article  MATH  Google Scholar 

  59. Liu Y M, Yin X F, Zhang W, et al. Tripartition of arbitrary single-qubit quantum information by using asymmetric four-qubit W state. Int J Quantum Inf, 2009, 7: 349–355

    Article  MATH  Google Scholar 

  60. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoFeng Yin or ZhanJun Zhang.

Additional information

Supported by the Program for New Century Excellent Talents at the University of China (Grant No. NCET-06-0554), the National Natural Science Foundation of China (Grant Nos. 60677001, 10747146, and 10874122), the Science-Technology Fund of Anhui Province for Outstanding Youth (Grant No. 06042087), the Key Fund of the Ministry of Education of China (Grant No. 206063), the General Fund of the Educational Committee of Anhui Province (Grant No. 2006KJ260B), the Natural Science Foundation of Guangdong Province of China (Grant Nos. 06300345 and 7007806), and the Talent Foundation of High Education of Anhui Province for Outstanding Youth (Grant No. 2009SQRZ018)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Liu, Y., Yin, X. et al. Partition of arbitrary single-qubit information among n recipients via asymmetric (n+1)-qubit W state. Sci. China Ser. G-Phys. Mech. Astron. 52, 1611–1617 (2009). https://doi.org/10.1007/s11433-009-0176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0176-0

Keywords

Navigation