Skip to main content
Log in

Simpler criterion on W state for perfect quantum state splitting and quantum teleportation

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A simpler criterion is presented to judge whether a W state can be taken as quantum channel for perfectly splitting or teleporting an arbitrary single-qubit state. If the W state is usable, the detailed manipulations in the two quantum information processes are amply shown. Moreover, some relevant discussions are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blakley G R. Proceedings of the American Federation of Information Processing, 1979 National Computer Conference (American Federation of Information Processing, Arlington, VA, 1979). 313–317

    Google Scholar 

  2. Shamir A. How to share a secret. Commun ACM, 1979, 22: 612–613

    Article  MATH  MathSciNet  Google Scholar 

  3. Hillery M, Bǔzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  4. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  ADS  Google Scholar 

  5. Gottesman D. Theory of quantum secret sharing. Phys Rev A, 2000, 61: 042311–042318

    Article  MathSciNet  ADS  Google Scholar 

  6. Bandyopadhyay S. Teleportation and secret sharing with pure entangled states. Phys Rev A, 2000, 62: 012308–012314

    Article  MathSciNet  ADS  Google Scholar 

  7. Tittel W, Zbinden H, Gisin N. Experimental demonstration of quantum secret sharing. Phys Rev A, 2001, 63: 042301–042306

    Article  ADS  Google Scholar 

  8. Chau H F. Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate. Phys Rev A, 2002, 66: 060302–060305

    Article  ADS  Google Scholar 

  9. Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G-Phys Mech Astron, 2007, 50: 572–580

    Article  MATH  ADS  Google Scholar 

  10. Bagherinezhad S, Karimipour V. Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers. Phys Rev A, 2003, 67: 044302–044305

    Article  ADS  Google Scholar 

  11. Li Y M, Zhang K S, Peng K C. Multiparty secret sharing of quantum information based on entanglement swapping. Phys Lett A, 2004, 324: 420–424

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state sharing. Phys Rev Lett, 2004, 92: 177903–177906

    Article  ADS  Google Scholar 

  13. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307–052312

    Article  ADS  Google Scholar 

  14. Xiao L, Wang C, Zhang W, et al. Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs. Phys Rev A, 2008, 77: 042315

    Article  ADS  Google Scholar 

  15. Zhang Y Q, Jin X R, Zhang S. Secret sharing of quantum information via entanglement swapping in cavity QED. Phys Lett A, 2005, 341: 380–384

    Article  MATH  ADS  Google Scholar 

  16. Zhang Z J, Man Z X, Li Y. Multiparty quantum secret sharing. Phys Rev A, 2005, 71: 044301–044304

    Article  MathSciNet  ADS  Google Scholar 

  17. Zhang Z J, Yang J, Man Z X, et al. Multiparty secret sharing of quantum information using and identifying Bell states. Eur Phys J D, 2005, 33: 133–136

    Article  ADS  Google Scholar 

  18. Deng F G, Li X H, Li C Y, et al. Multiparty quantumstate sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys Rev A, 2005, 72: 044301–044304

    Article  ADS  Google Scholar 

  19. Deng F G, Zhou H Y, Long G L. Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys Lett A, 2005, 337: 329–334

    Article  MATH  ADS  Google Scholar 

  20. Deng F G, Li X H, Li C Y, et al. Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur Phys J D, 2006, 39: 459–464

    Article  ADS  Google Scholar 

  21. Li X H, Zhou P, Li C Y, et al. Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J Phys B, 2006, 39: 1975–1983

    Article  ADS  Google Scholar 

  22. Zhang Z J. Multiparty secret sharing of quantum information via cavity QED. Opt Commun, 2006, 261: 199–202

    Article  ADS  Google Scholar 

  23. Gordon G, Rigolin G. Generalized quantum-state sharing. Phys Rev A, 2006, 73: 062316–062319

    Article  ADS  Google Scholar 

  24. Wang Z Y, Yuan H, Zhang Z J. Three-party qutrit-state sharing. Eur Phys J D, 2007, 41: 371–375

    Article  MathSciNet  ADS  Google Scholar 

  25. Wang Z Y, Liu Y M, Zhang Z J. Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt Commun, 2007, 276: 322–326

    Article  ADS  Google Scholar 

  26. Yuan H, Liu Y M, Zhang W, et al. Optimizing resource consumption, operation complexity and efficiency in quantumstate sharing, J Phys B, 2008, 41: 145506-1–6

    Article  ADS  Google Scholar 

  27. Zhang W, Liu Y M, Yin X F, et al. Splitting four ensembles of two-qubit quantum information via three Einstein-Podolsky-Rosen pairs. Eur Phys J D, 2009, 55: 189–195

    Article  Google Scholar 

  28. Deng F G, Li C Y, Li Y S, et al. Symmetric multipartycontrolled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 022338–022345

    Article  ADS  Google Scholar 

  29. Li X H, Deng F G, Zhou H Y. Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger-Horne-Zeilinger states. Chin Phys Lett, 2007, 24: 1151–1153

    Article  ADS  Google Scholar 

  30. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321–022326

    Article  ADS  Google Scholar 

  31. Yu Y F, Feng J, Zhan M S. Multi-output programmable quantum processor. Phys Rev A, 2002, 66: 052310–052314

    Article  ADS  Google Scholar 

  32. Yu Y F, Feng J, Zhan M S. Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state. Phys Rev A, 2003, 68: 024303–024305

    Article  ADS  Google Scholar 

  33. Gao T, Yan F L, Li Y C. Optimal controlled teleportation. Europhys Lett, 2008, 84: 50001

    Article  ADS  Google Scholar 

  34. Yan F L, Wang D. Probabilistic and controlled teleportation of the unknown quantum states. Phys Lett A, 2003, 316: 297–300

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Yan F L, Ding HW. Probabilistic teleportation of an unknown two-particle state with a four-particle entangled state and positive operator valued measure. Chin Phys Lett, 2006, 23: 17–20

    Article  ADS  Google Scholar 

  36. Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G-Phys Mech Astron, 2007, 50: 572–580

    Article  MATH  ADS  Google Scholar 

  37. Gao T, Yan F L, Li Y C. Optimal controlled teleportation via several kinds of three-qubit states. Sci China Ser G-Phys Mech Astron, 2008, 51: 1529–1556

    Article  ADS  Google Scholar 

  38. Dǔr W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways. Phys Rev A, 2000, 62: 062314–062325

    Article  MathSciNet  ADS  Google Scholar 

  39. Shi B S, Tomita A. Teleportation of an unknown state by W state. Phys Lett A, 2002, 296: 161–164

    MATH  MathSciNet  ADS  Google Scholar 

  40. Joo J, Park Y J, Oh S, et al. Quantum teleportation via a W state. New J Phys, 2003, 5: 136.1–136.9

    Article  Google Scholar 

  41. Cao H J, Song H S. Quantum secure direct communication with W state. Chin Phys Lett, 2006, 23: 290–292

    Article  ADS  Google Scholar 

  42. Liu J, Liu Y M, Cao H J, et al. Revisiting quantum secure direct communication with W state. Chin Phys Lett, 2006, 23: 2652–2655

    Article  ADS  Google Scholar 

  43. Agrawal P, Pati A. Perfect teleportation and superdense coding with W states. Phys Rev A, 2006, 74: 062320–062324

    Article  ADS  Google Scholar 

  44. Zheng S B. Splitting quantum information via W states. Phys Rev A, 2006, 74: 054303–054306

    Article  ADS  Google Scholar 

  45. Li L Z, Qiu D W. The states of W-class as shared resources for perfect teleportation and superdense coding. J Phys A, 2007, 40: 10871–10885

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Zhang Z J, Cheung C Y. Minimal classical communication and measurement complexity for quantum information splitting. J Phys B, 2008, 41: 015503-1–6

    ADS  Google Scholar 

  47. Zuo X Q, Liu Y M, Zhang W, et al. Minimal classical communication cost and measurement complexity in splitting twoqubit quantum information via asymmetric W states. Int J Quantum Inf, 2008, 6: 1245–1253

    Article  MATH  Google Scholar 

  48. Pan G X, Liu Y M, Wang Z Y, et al. Tripartite splitting arbitrary 2-qubit quantum information by using two asymmetric W states. Common Theor Phys, 2009, 51: 227–231

    Article  MATH  MathSciNet  Google Scholar 

  49. Liu Y M, Yin X F, Zhang W, et al. Tripartition of arbitrary single-qubit quantum information by using asymmetric fourqubit W state. Int J Quantum Inf, 2009, 7: 349–355

    Article  MATH  Google Scholar 

  50. Zhang W, Liu Y M, Yin X F, et al. Partition of arbitrary single-qubit information among recipients via asymmetric — qubit W state. Sci Chia Ser G-Phys Mech Astron, 2009, 52: 1611–1617

    Article  Google Scholar 

  51. Yang S, Song Z, Sun C P. Dynamic generation of entangling wave packets in XY spin system with decaying long-range couplings. Sci China Ser G-Phys Mech Astron, 2008, 51: 45–55

    Article  MATH  ADS  Google Scholar 

  52. Ding S C, Jin Z. Review on the study of entanglement in quantum computation speedup. Chin Sci Bull, 2007, 52: 2161–2166

    Article  Google Scholar 

  53. Chen W, Han Z F, Mo X F, et al. Active phase compensation of quantum key distribution system. Chin Sci Bull, 2008, 53: 1310–1314

    Article  Google Scholar 

  54. Tian D P, Tao Y J, Qin M. Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state. Sci China Ser G-Phys Mech Astron, 2008, 51: 1523–1528

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhanJun Zhang.

Additional information

Supported by the Program for New Century Excellent Talents at the University of China (Grant No. NCET-06-0554), the National Natural Science Foundation of China (Grant Nos. 10975001, 60677001, 10747146, and 10874122), the Science-Technology Fund of Anhui Province for Outstanding Youth (Grant No. 06042087), the Key Fund of the Ministry of Education of China (Grant No. 206063), and the General Fund of the Educational Committee of Anhui Province (Grant No. 2006KJ260B), the Talent Foundation of Higher Education of Anhui Province for Outstanding Youth (Grant No. 2009SQRZ018), and the Natural Science Foundation of Guangdong Province (Grant Nos. 06300345 and 7007806)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, X., Liu, Y., Zhang, W. et al. Simpler criterion on W state for perfect quantum state splitting and quantum teleportation. Sci. China Ser. G-Phys. Mech. Astron. 52, 1906–1912 (2009). https://doi.org/10.1007/s11433-009-0305-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0305-9

Keywords

Navigation