Skip to main content
Log in

A continuum theory of surface piezoelectricity for nanodielectrics

  • Research Paper
  • Special Issue: Forward for the Department of Engineering Mechanics, Tsinghua University
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper, a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials. This theory is inspired by the physical idea that once completely relaxed, an insulating free dielectric surface will sustain a nontrivial spontaneous surface polarization in the normal direction together with a tangential self-equilibrated residual surface stress field. Under external loadings, the surface Helmholtz free energy density is identified as the characteristic function of such surfaces, with the in-plane strain tensor of surface and the surface free charge density as the independent state variables. New boundary conditions governing the surface piezoelectricity are derived through the variational method. The resulting concepts of charge-dependent surface stress and deformation-dependent surface electric field reflect the linear electromechanical coupling behavior of nanodielectric surfaces. As an illustrative example, an infinite radially polarizable piezoelectric nanotube with both inner and outer surfaces grounded is investigated. The novel phenomenon of possible surface-induced polarity inversion is predicted for thin enough nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalinin S V, Setter N, Kholkin A L. Electromechanics on the nanometer scale: Emerging phenomena, devices, and applications. MRS Bull, 2009, 34: 634–638

    Article  Google Scholar 

  2. Badiali J P, Goodisman J. Lippmann equation and the ideally polarizable electrode. J Phys Chem, 1975, 79: 223–232

    Article  Google Scholar 

  3. Guidelli R. Superficial work and surface stress at solid electrodes: A thermodynamic assessment. J Electroanal Chem, 1998, 453: 69–77

    Article  Google Scholar 

  4. Lipkowski J, Schmickler W, Kolb D M, et al. Comments on the thermodynamics of solid electrodes. J Electroanal Chem, 1998, 452: 193–197

    Article  Google Scholar 

  5. Valincius G. Electrocapillary equations of solid electrodes. J Electroanal Chem, 1999, 478: 40–49

    Article  Google Scholar 

  6. Haiss W. Surface stress of clean and adsorbate-covered solids. Rep Prog Phys, 2001, 64: 591–648

    Article  ADS  Google Scholar 

  7. Kramer D, Weissmuller J. A note on surface stress and surface tension and their interrelation via Shuttleworth’s equation and the Lippmann equation. Surf Sci, 2007, 601: 3042–3051

    Article  ADS  Google Scholar 

  8. Marichev V A. Comment on “A note on surface stress and surface tension and their interrelation via Shuttleworth’s equation and the Lippmann equation” by D. Kramer and J.Weissmuller [Surf. Sci. 601 (2007) 3042]. Surf Sci, 2008, 602: 1131–1132

    Article  ADS  Google Scholar 

  9. Marichev V A. Current state and problems in the surface tension of solids. Colloids Surf A, 2009, 345: 1–12

    Article  Google Scholar 

  10. Marichev V A. General thermodynamic equations for the surface tension of liquids and solids. Surf Sci, 2010, 604: 458–463

    Article  ADS  Google Scholar 

  11. Marichev V A. Update on current state and problems in the surface tension of condensed matter. Adv Colloid Interface Sci, 2010, 157: 34–60

    Article  Google Scholar 

  12. Stengel M, Spaldin N A. Origin of the dielectric dead layer in nanoscale capacitors. Nature, 2006, 443: 679–682

    Article  ADS  Google Scholar 

  13. Majdoub M S, Maranganti R, Sharma P. Understanding the origins of the intrinsic dead layer effect in nanocapacitors. Phys Rev B, 2009, 79: 115412

    Article  ADS  Google Scholar 

  14. Chang L W, Alexe M, Scott J F, et al. Settling the “dead layer” debate in nanoscale capacitors. Adv Mater, 2009, 21: 4911–4914

    Article  Google Scholar 

  15. Watanabe Y, Okano M, Masuda A. Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys Rev Lett, 2001, 86: 107601

    Google Scholar 

  16. Cicero G, Ferretti A, Catellani A. Surface-induced polarity inversion in ZnO nanowires. Phys Rev B, 2009, 80: 201304(R)

    Article  ADS  Google Scholar 

  17. Glinchuk M D, Morozovska A N. The internal electric field originating from the mismatch effect and its influence on ferroelectric thin film properties. J Phys Condens Matter, 2004, 16: 3517–3531

    Article  ADS  Google Scholar 

  18. Glinchuk M D, Morozovska A N, Eliseev E A. Ferroelectric thin films phase diagrams with self-polarized phase and electric state. J Appl Phys, 2006, 99: 114102

    Article  ADS  Google Scholar 

  19. Huang G Y, Yu S W. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys Stat Sol b, 2006, 243: R22–R24

    Article  ADS  Google Scholar 

  20. Shen S, Hu S. A theory of flexoelectricity with surface effect for elastic dielectrics. J Mech Phys Solids, 2010, 58: 665–677

    Article  ADS  MathSciNet  Google Scholar 

  21. Eliseev E A, Morozovska A N, Glinchuk M D, et al. Surface-induced piezomagnetic, piezoelectric, and linear magnetoelectric effects in nanosystems. Phys Rev B, 2010, 82: 085408

    Article  ADS  Google Scholar 

  22. Tagantsev A K. Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys Rev B, 1986, 34: 5883–5889

    Article  ADS  Google Scholar 

  23. Tagantsev A K. Electric polarization in crystals and its response to thermal and elastic perturbations. Phase Trans, 1991, 35: 119–203

    Article  Google Scholar 

  24. Cross L E. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J Mater Sci, 2006, 41: 53–63

    Article  ADS  Google Scholar 

  25. Zubko P, Catalan G, Buckley A, et al. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys Rev Lett, 2007, 99: 167601

    Article  ADS  Google Scholar 

  26. Catalan G, Sinnamon L J, Gregg J M. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J Phys Condens Matter, 2004, 16: 2253–2264

    Article  ADS  Google Scholar 

  27. Majdoub M S, Sharma P, Cagin T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys Rev B, 2008, 77: 125424 [Erratum-ibid, 2009, 79: 119904(E)]

    Article  ADS  Google Scholar 

  28. Eliseev E A, Morozovska A N, Glinchuk M D, et al. Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys Rev B, 2009, 79: 165433

    Article  ADS  Google Scholar 

  29. Resta R. Towards a bulk theory of flexoelectricity. Phys Rev Lett, 2010, 105: 127601

    Article  ADS  Google Scholar 

  30. Kalinin S V, Meunier V. Electronic flexoelectricity in low-dimensional systems. Phys Rev B, 2008, 77: 033403

    Article  ADS  Google Scholar 

  31. Maranganti R, Sharma P. Atomistic determination of flexoelectric properties of crystalline dielectrics. Phys Rev B, 2009, 80: 054109

    Article  ADS  Google Scholar 

  32. Hong J, Catalan G, Scott J F, et al. The flexoelectricity of barium and strontium titanates from first principles. J Phys Condens Matter, 2010, 22: 112201

    Article  ADS  Google Scholar 

  33. Kretschmer R, Binder K. Surface effects on phase transitions in ferroelectrics and dipolar magnets. Phys Rev B, 1979, 20: 1065–1076

    Article  ADS  Google Scholar 

  34. Duan C G, Sabirianov R F, Mei W N, et al. Interface effect on ferroelectricity at the nanoscale. Nano Lett, 2006, 6: 483–487

    Article  ADS  Google Scholar 

  35. Akdogan E K, Safari A. Thermodynamic theory of intrinsic finite size effects in PbTiO3 nanocrystals. II. Dielectric and piezoelectric properties. J Appl Phys, 2007, 101: 064115

    Article  ADS  Google Scholar 

  36. Hong J, Fang D. Size-dependent ferroelectric behaviors of BaTiO3 nanowires. Appl Phys Lett, 2008, 92: 012906

    Article  ADS  Google Scholar 

  37. Eliseev E A, Morozovska A N. General approach for the description of size effects in ferroelectric nanosystems. J Mater Sci, 2009, 44: 5149–5160

    Article  ADS  Google Scholar 

  38. Bratkovsky A M, Levanyuk A P. Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures. Phys Rev Lett, 2005, 94: 107601

    Article  ADS  Google Scholar 

  39. Gurtin M E, Murdoch A I. A continuum theory of elastic material surfaces. Arch Rat Mech Anal, 1975, 57: 291–323

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang J, Huang Z P, Duan H L, et al. Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sin, 2011, in press

  41. Flügge W. Tensor Analysis and Continuum Mechanics. Berlin: Springer-Verlag, 1972

    MATH  Google Scholar 

  42. Fang D, Liu J. Fracture Mechanics of Piezoelectric and Ferroelectric Solids (in Chinese). Beijing: Tsinghua University Press, 2008

    Google Scholar 

  43. Griffiths D J. Introduction to Electrodynamics. 3rd edition. New Jersey: Prentice Hall, 1999

    Google Scholar 

  44. Chen T, Chiu M S, Weng C N. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J Appl Phys, 2006, 100: 074308

    Article  ADS  Google Scholar 

  45. Benveniste Y, Miloh T. Imperfect soft and stiff interfaces in twodimensional elasticity. Mech Mater, 2001, 33: 309–323

    Article  Google Scholar 

  46. Benveniste Y. A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J Mech Phys Solids, 2006, 54: 708–734

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Oura K, Lifshits V G, Saranin A A, et al. Surface Science: An Introduction. Berlin: Springer-Verlag, 2003

  48. Bechstedt F. Principles of Surface Physics. Berlin: Springer-Verlag, 2003

    Book  Google Scholar 

  49. Ibach H. Physics of Surfaces and Interfaces. Berlin: Springer-Verlag, 2006

    Google Scholar 

  50. Cahn J W. Thermodynamics of solid and fluid surfaces. In: Johnson W C, Blakely J M, eds. Interfacial Segregation. Ohio: American Society for Metals, 1979. 3–23

    Google Scholar 

  51. Nozières P, Wolf D E. Interfacial properties of elastically strained materials I. Thermodynamics of a planar interface. Z Phys B-Condensed Matter, 1988, 70: 399–407

    Article  Google Scholar 

  52. Rusanov A I. Surface thermodynamics revisited. Surf Sci Rep, 2005, 58: 111–239

    Article  ADS  Google Scholar 

  53. Pan X H, Yu S W, Feng X Q. Oriented thermomechanics for isothermal planar elastic surfaces under small deformation. Presented at, and to appear in the Proceedings of, the IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, Beijing, August 8–12, 2010

  54. Gibbs J W. The Collected Works of J. Willard Gibbs, Vol. I. New Haven: Yale University Press, 1948

    Google Scholar 

  55. McMeeking R M, Landis C M. Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech, 2005, 72: 581–590

    Article  MATH  Google Scholar 

  56. Kuang Z B. Internal energy variational principles and governing equations in electroelastic analysis. Int J Solids Struct, 2009, 46: 902–911

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang X M, Shen Y P. The variational principles for pyroelectric media. Acta Mech Solida Sin, 1995, 8: 303–313

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShouWen Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, X., Yu, S. & Feng, X. A continuum theory of surface piezoelectricity for nanodielectrics. Sci. China Phys. Mech. Astron. 54, 564–573 (2011). https://doi.org/10.1007/s11433-011-4275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4275-3

Keywords

Navigation