Skip to main content
Log in

Criterion and flexibility of operation difficulty for perfect teleportation of arbitrary n-qutrit state with (n:n)-qutrit pure state

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Under the preconditions that a (n:n)-qutrit pure state is taken as the quantum channel to teleport an arbitrary n-qutrit state and the sender is able to perform generalized-Bell-state measurements and publish the results, the necessary transformation operation in the receiver’s site is worked out in terms of the technique of swapping states. A criterion on whether such quantum channel can be utilized for perfect teleportation is derived by virtue of the unitarity of the resultant transformation operator. Moreover, the flexibility between the measurement difficulty and the reconstruction difficulty is shown and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579

    Article  ADS  Google Scholar 

  3. Furusawa A, Sørensen J L, Braunstein S L, et al. Unconditional quantum teleportation. Science, 1998, 282: 706–709

    Article  ADS  Google Scholar 

  4. Long G L, Liu X S. Theoretically efficient high-capacity quantum-keydistribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  5. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  ADS  Google Scholar 

  6. Wang X B. Quantum key distribution with two-qubit quantum codes. Phys Rev Lett, 2004, 92: 077902

    Article  ADS  Google Scholar 

  7. Yang W X, Gong Z X. Practical scheme for quantum dense coding between three parties using microwave radiation in trapped ions. J Phys B-At Mol Opt Phys, 2007, 40: 1245–1252

    Article  MathSciNet  ADS  Google Scholar 

  8. Yang WX, Zhan Z M, Li J H. Efficient scheme for multipartite entanglement and quantum information processing with trapped ions. Phys Rev A, 2005, 72: 062108

    Article  ADS  Google Scholar 

  9. Hillery M, Bŭzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  10. Lance AM, Symul T, Bowen WP, et al. Tripartite quantum state sharing. Phys Rev Lett, 2004, 92: 177903

    Article  ADS  Google Scholar 

  11. Zhang Z J. Multiparty quantum secret sharing of secure direct communication. Phys Lett A, 2005, 342: 60–66

    Article  MATH  ADS  Google Scholar 

  12. Zhang Z J, Li Y, Man Z X. Multiparty quantum secret sharing. Phys Rev A, 2005, 71: 044301

    Article  MathSciNet  ADS  Google Scholar 

  13. Zhang Z J, Man Z X. Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys Rev A, 2005, 72: 022303

    Article  MathSciNet  ADS  Google Scholar 

  14. Zhang Z J, Yang J, Man Z X, et al. Multiparty secret sharing of quantum information using and identifying Bell states. Eur Phys J D, 2005, 33: 133–136

    Article  ADS  Google Scholar 

  15. Zhang Z J, Cheung C Y. Minimal classical communication and measurement complexity for quantum information splitting. J Phys B-At Mol Opt Phys, 2008, 41: 015503

    Article  ADS  Google Scholar 

  16. Yan F L, Gao T. Quantum secret sharing between multiparty and multiparty without entanglement. Phys Rev A, 2005, 72: 012304

    Article  ADS  Google Scholar 

  17. Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2005, 72: 044302

    Article  ADS  Google Scholar 

  18. Wang Y H, Song H S. Preparation of multi-atom specially entangled W-class state and splitting quantum information. Chin Sci Bull, 2009, 54(15): 2599–2605

    Article  Google Scholar 

  19. Shi R H, Huang L S, Yang W, et al. Quantum secret sharing between multiparty and multiparty with Bell states and Bell measurements. Sci China Phys Mech Astron, 2010, 53(12): 2238–2244

    Article  ADS  Google Scholar 

  20. Yuan H, Liu Y M, Zhang W, et al. Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J Phys B-At Mol Opt Phys, 2008, 41: 145506

    Article  ADS  Google Scholar 

  21. Wang D, Liu Y M, Zhang Z J. Remote preparation of a class of threequbit states. Opt Commun, 2008, 281: 871–875

    Article  ADS  Google Scholar 

  22. Yu Y F, Feng J, Zhan M S. Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state. Phys Rev A, 2003, 68: 024303

    Article  ADS  Google Scholar 

  23. Lee J, Min H, Oh S D. Multipartite entanglement for entanglement teleportation. Phys Rev A, 2002, 66: 052318

    Article  ADS  Google Scholar 

  24. Rigolin G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys Rev A, 2005, 71: 032303; Deng F G. Comment on “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement”. Phys Rev A, 2005, 72: 036301

    Article  ADS  Google Scholar 

  25. Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement. Phys Rev Lett, 2006, 96: 060502

    Article  ADS  Google Scholar 

  26. Chen P X, Zhu S Y, Guo G C. General form of genuine multipartite entanglement quantum channels for teleportation. Phys Rev A, 2006, 74: 032324

    Article  ADS  Google Scholar 

  27. Agrawal P, Pati A. Perfect teleportation and superdense coding with W states. Phys Rev A, 2006, 74: 062320

    Article  ADS  Google Scholar 

  28. Zhang Z J, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information. Phys Lett A, 2005, 341: 55–59

    Article  MATH  ADS  Google Scholar 

  29. Zhang Z J. Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys Lett A, 2006, 352: 55–58

    Article  MATH  ADS  Google Scholar 

  30. Wang X W, Shan Y G, Xia L X, et al. Dense coding and teleportation with one-dimensional cluster states. Phys Lett A, 2007, 364: 7–11

    Article  MATH  ADS  Google Scholar 

  31. Zhang Z J, Liu Y M, Wang D. Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys Lett A, 2007, 372: 28–32

    Article  ADS  MATH  Google Scholar 

  32. Zhang W, Liu Y M, Wang Z Y, et al. Preparation of multi-atom cluster state and teleportation of arbitrary two-atom state via thermal cavity. Opt Commun, 2008, 281: 4549–4552

    Article  ADS  Google Scholar 

  33. Muralidharan S, Panigrahi P K. Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys Rev A, 2008, 77: 032321

    Article  ADS  Google Scholar 

  34. SaiToh A, Rahimi R, Nakahara M. Economical (k,m)-threshold controlled quantum teleportation. Phys Rev A, 2009, 79: 062313

    Article  MathSciNet  ADS  Google Scholar 

  35. Ishizaka S, Hiroshima T. Quantum teleportation scheme by selecting one of multiple output ports. Phys Rev A, 2009, 79: 042306

    Article  ADS  Google Scholar 

  36. Lee S, Park J. Monogamy of entanglement and teleportation capability. Phys Rev A, 2009, 79: 054309

    Article  ADS  Google Scholar 

  37. Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching. Phys Rev A, 2000, 61: 034301

    Article  MathSciNet  ADS  Google Scholar 

  38. Joo J, Park Y J, Oh S, et al. Quantum teleportation via a W state. New J Phys, 2003, 5: 136.1–136.9

    Article  Google Scholar 

  39. Yan F L, Wang D. Probabilistic and controlled teleportation of unknown quantum states. Phys Lett A, 2003, 316: 297–303

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. Wang M Y, Yan F L. Chain teleportation via partially entangled states. Eur Phys J D, 2009, 54: 111–114

    Article  MathSciNet  ADS  Google Scholar 

  41. Zubairy M S. Quantum teleportation of a field state. Phys Rev A, 1998, 58: 4368–4372

    Article  MathSciNet  ADS  Google Scholar 

  42. Yin X F, Liu Y M, Zhang Z Y, et al. Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state. Sci China Phys Mech Astron, 2010, 53: 2059–2063

    Article  ADS  Google Scholar 

  43. Zhang W, Liu Y M, Zuo X Q, et al. Preparation of genuine Yeo-Chua entangled state and teleportation of two-atom state via cavity QED. Sci China Phys Mech Astron, 2010, 53: 2232–2237

    Article  ADS  Google Scholar 

  44. Zuo X Q, Liu Y M, Zhang W, et al. Simpler criterion on W state for perfect quantum state splitting and quantum teleportation. Sci China Ser G-Phys Mech Astron, 2009, 52: 1906–1912

    Article  ADS  Google Scholar 

  45. Zhang X H, Yang Z Y, Xu P P. Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom. Sci China Ser G-Phys Mech Astron, 2009, 52: 1034–1038

    Article  ADS  Google Scholar 

  46. Gao T, Yan F L, Li Y C. Optimal controlled teleportation via several kinds of three-qubit states. Sci China Ser G-Phys Mech Astron, 2008, 51: 1529–1556

    Article  ADS  Google Scholar 

  47. Tian D P, Tao Y J, Qin M. Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state. Sci China Ser GPhys Mech Astron, 2008, 51: 1523–1528

    Article  ADS  Google Scholar 

  48. Murao M, Plenio M B, Vedral V. Quantum-information distribution via entanglement. Phys Rev A, 2000, 61: 032311

    Article  ADS  Google Scholar 

  49. Xu FX, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin Sci Bull, 2009, 54: 2991–2997

    Article  Google Scholar 

  50. Li C Z. Real applications of quantum communications in China. Chin Sci Bull, 2009, 54: 2976–2977

    Article  Google Scholar 

  51. Pan J W, Daniell M, Gasparoni S, et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys Rev Lett, 2001, 86: 4435–4438

    Article  ADS  Google Scholar 

  52. Cheung C Y, Zhang Z J. Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys Rev A, 2009, 80: 022327

    Article  ADS  Google Scholar 

  53. Zha X W, Song H Y. Non-Bell-pair quantum channel for teleporting an arbitrary two-qubit state. Phys Lett A, 2007, 369: 377–379

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. Zha X W, Ren K F. General relation between the transformation operator and an invariant under stochastic local operations and classical communication in quantum teleportation. Phys Rev A, 2008, 77: 014306

    Article  ADS  Google Scholar 

  55. Zhang Z Y, Liu Y M, Zuo X Q, et al. Transformation operator and criterion for perfectly teleporting arbitrary three-qubit state with six-qubit channel and Bell-state measurement. Chin Phys Lett, 2009, 26: 120303

    Article  ADS  Google Scholar 

  56. Zuo X Q, Liu Y M, Zhang Z Y, et al. Simpler criterion and flexibility of operation complexity for perfectly teleporting arbitrary n-qubit state with 2n-qubit pure state. Sci China Phys Mech Astron, 2010, 53: 2069–2073

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhanJun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Liu, Y., Zhang, W. et al. Criterion and flexibility of operation difficulty for perfect teleportation of arbitrary n-qutrit state with (n:n)-qutrit pure state. Sci. China Phys. Mech. Astron. 54, 1476–1480 (2011). https://doi.org/10.1007/s11433-011-4388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4388-8

Keywords

Navigation