Skip to main content
Log in

Stability test of fractional-delay systems via integration

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

This paper focuses on the stability testing of fractional-delay systems. It begins with a brief introduction of a recently reported algorithm, a detailed demonstration of a failure in applications of the algorithm and the key points behind the failure. Then, it presents a criterion via integration, in terms of the characteristic function of the fractional-delay system directly, for testing whether the characteristic function has roots with negative real parts only or not. As two applications of the proposed criterion, an algorithm for calculating the rightmost characteristic root and an algorithm for determining the stability switches, are proposed. The illustrative examples show that the algorithms work effectively in the stability testing of fractional-delay systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lundstrom B N, Higgs M H, Spain W J, et al. Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci, 2008, 11: 1335–1342

    Article  Google Scholar 

  2. Xu M Y, Tan W C. Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics. Sci China Phys Mech Astron, 2006, 49: 257–272

    Article  ADS  MATH  Google Scholar 

  3. Tong D K, Wang R H. Analysis of the flow of non-Newtonian viscoelastic fluids in fractal reservoir with the fractional derivative. Sci China Ser G-Phys Mech Astron, 2004, 47: 421–441

    Article  ADS  Google Scholar 

  4. Monje C A, Chen Y Q, Vinagre B M, et al. Fractional-order systems and controls: Fundamentals and Applications. London: Springer-Verlag, 2010

    Book  MATH  Google Scholar 

  5. Bagley R L, Torvik P J. On the appearance of the fractional derivative in the behavior of real materials. ASME J Appl Mech, 1984, 51: 294–298

    Article  MATH  Google Scholar 

  6. Adolfsson K, Enelund M. Fractional derivative viscoelasticity at large deformations. Nonlinear Dyn, 2003, 33: 301–321

    Article  MathSciNet  MATH  Google Scholar 

  7. Heymans N. Fractional calculus description of non-linear viscoelastic behaviour of polymers. Nonlinear Dyn, 2004, 38: 221–231

    Article  MATH  Google Scholar 

  8. Koeller R C. Torward an equation of state for solid materials with memory by use of the half-order derivative. Acta Mech, 2007, 191: 125–133

    Article  MATH  Google Scholar 

  9. Rossikhin Y A, Shitikova M V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl Mech Rev, 2010, 63: 010801

    Article  ADS  Google Scholar 

  10. Eldred L B, Baker WP, Palazotto A N. Kelvin-Voigt vs fractional derivative model as constitutive relations for viscoelastic materials. AIAA J, 1995, 33: 547–550

    Article  ADS  MATH  Google Scholar 

  11. Chen H S, Hou T T, Feng Y P. Fractional model for the physical aging of polymers (in Chinese). Sci Sin Phys Mech Astron, 2010, 40: 1267–1274

    Google Scholar 

  12. Coronado A, Trindade M A, Sampaio R. Frequency-dependent viscoelastic models for passive vibration isolation systems. Shock Vib, 2002, 9: 253–264

    Google Scholar 

  13. Riewe F. Mechanics with fractional derivatives. Phys Rev E, 1997, 55: 3591–3592

    Article  MathSciNet  ADS  Google Scholar 

  14. Ryabov Y E, Puzenko A. Damped oscillations in view of the fractional oscillator equation. Phys Rev E, 2002, 66: 184201

    Article  ADS  Google Scholar 

  15. Narahari A B N, Hanneken J W, Clarke T. Response characteristics of a fractional oscillator. Physica A, 2002, 309: 275–288

    Article  ADS  MATH  Google Scholar 

  16. Frederico G S F, Torres D F M. Fractional conservation laws in optimal control theory. Nonlinear Dyn, 2007, 53: 215–222

    Article  MathSciNet  Google Scholar 

  17. Wang Z H, Hu H Y. Stability of a linear oscillator with damping force of fractional-order derivative. Sci China Phys Mech Astron, 2010, 53: 345–352

    Article  ADS  Google Scholar 

  18. Chen X R, Liu C X, Wang F Q, et al. Study on the fractional-order Liu chaotic system with circuit experiment and its control (in Chinese). Acta Phys Sin, 2007, 57: 1416–1422

    Google Scholar 

  19. Lazarević M P. Finite time stability analysis of PD α fractional control of robotic time-delay systems. Mech Res Commun, 2006, 33: 269–279

    Article  MATH  Google Scholar 

  20. Ozturk N, Uraz A. An analytic stability test for a certain class of distributed parameter systems with delay. IEEE Trans CAS, 1985, 32: 393–396

    Article  MathSciNet  Google Scholar 

  21. Chen Y Q, More K L. Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dyn, 2002, 29: 191–200

    Article  MATH  Google Scholar 

  22. Hwang C, Cheng Y C. A numerical algorithm for stability testing of fractional delay systems. Automatica, 2006, 42: 825–831

    Article  MathSciNet  MATH  Google Scholar 

  23. Bonnet C, Partington J R. Stabilization of some fractional delay systems of neutral type. Automatica, 2007, 43: 2047–2053

    Article  MathSciNet  MATH  Google Scholar 

  24. Buslowicz M. Stability of linear continuous-time fractional order systems with delays of the retarded type. Bull Polish Acad Sci-Tech Sci, 2008, 56: 319–324

    Google Scholar 

  25. Fu M Y, Olbrot A W, Polis M P. Robust stability for time-delay systems: The edge theorem and graphical tests. IEEE Trans Auto Control, 1989, 34: 813–820

    Article  MathSciNet  MATH  Google Scholar 

  26. Frashad M B, Masoud K G. An efficient numerical algorithm for stability testing of fractional-delay systems. ISA Trans, 2009, 48: 32–37

    Article  Google Scholar 

  27. Ablowitz M J, Fokas A S. Complex Variables: Introduction and Applications. 2nd Ed. Cambridge: Cambridge University Press, 2003

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZaiHua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Du, M. & Shi, M. Stability test of fractional-delay systems via integration. Sci. China Phys. Mech. Astron. 54, 1839 (2011). https://doi.org/10.1007/s11433-011-4447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4447-1

Keywords

Navigation