Skip to main content
Log in

Loading direction dependent mechanical behavior of graphene under shear strain

  • Article
  • Special Issue: Physical Mechanics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The mechanical behavior of graphene under in-plane shear is studied using molecular dynamics simulations. We show that the shear behavior of chiral graphene is dependent on the loading direction due to its structural asymmetry. The maximum shear failure strain of graphene in one direction may be 1.7 times higher than that in the opposite direction. We discuss also the influence of the cut-off parameters on the calculations. Our findings are useful for the understanding of mechanical behavior of graphene and the potential applications of graphene in nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    Article  ADS  Google Scholar 

  2. Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388

    Article  ADS  Google Scholar 

  3. Wang J, He X, Kitipornchai S, et al. Geometrical nonlinear free vibration of multi-layered graphene sheets. J Phys D-Appl Phys 2011, 44(13): 135401

    Article  ADS  Google Scholar 

  4. Liu Y, Xu Z, Zheng Q. The interlayer shear effect on graphene multilayer resonators. J Mech Phys Solids, 2011, 59(8): 1613–1622

    Article  MathSciNet  ADS  Google Scholar 

  5. Ma T, Li B, Chang T. Chirality- and curvature-dependent bending stiffness of single layer graphene. Appl Phys Lett, 2011, 99(20): 201901

    Article  ADS  Google Scholar 

  6. Shen L, Shen H S, Zhang C L. Temperature-dependent elastic properties of single layer graphene sheets. Mater Design, 2010, 31(9): 4445–4449

    Article  Google Scholar 

  7. Shen L, Shen H S, Zhang C L. Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comp Mater Sci, 2010, 48(3): 680–685

    Article  Google Scholar 

  8. Han T, He P, Luo Y, et al. Research progress in the mechanical properties of graphene (in Chinese). Adv Mech, 2011, 41(3): 279–293

    Google Scholar 

  9. Udupa A, Martini A. Model predictions of shear strain-induced ridge defects in graphene. Carbon, 2011, 49(11): 3571–3578

    Article  Google Scholar 

  10. Wang Z, Devel M. Periodic ripples in suspended graphene. Phys Rev B, 2011, 83(12): 125422

    Article  ADS  Google Scholar 

  11. Duan W H, Gong K, Wang Q. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear. Carbon, 2011, 49(9): 3107–3112

    Article  Google Scholar 

  12. Ruiz-Vargas C S, Zhuang H L, Huang P Y, et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett, 2011, 11(6): 2259–2263

    Article  ADS  Google Scholar 

  13. Sakhaee-Pour A. Elastic properties of single-layered graphene sheet. Solid State Commun, 2009, 149(1–2): 91–95

    Article  ADS  Google Scholar 

  14. Tsai J L, Tu J F. Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater Des, 2010, 31(1): 194–199

    Article  Google Scholar 

  15. Zheng Q, Geng Y, Wang S, et al. Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon, 2010, 48(15): 4315–4322

    Article  Google Scholar 

  16. Zakharchenko K V, Katsnelson M I, Fasolino A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys Rev Lett, 2009, 102(4): 046808

    Article  ADS  Google Scholar 

  17. Chang T. Torsional behavior of chiral single-walled carbon nanotubes is loading direction dependent. Appl Phys Lett, 2007, 90(20): 201910

    Article  ADS  Google Scholar 

  18. Geng J, Chang T. Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon nanotubes. Phys Rev B, 2006, 74(24): 245428

    Article  ADS  Google Scholar 

  19. Min K, Aluru N R. Mechanical properties of graphene under shear deformation. Appl Phys Lett, 2011, 98(1): 013113

    Article  ADS  Google Scholar 

  20. Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B, 1990, 42(15): 9458–9471

    Article  ADS  Google Scholar 

  21. Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81(8): 3684–3690

    Article  ADS  Google Scholar 

  22. Belytschko T, Xiao S P, Schatz G C, et al. Atomistic simulations of nanotube fracture. Phys Rev B, 2002, 65(23): 235430

    Article  ADS  Google Scholar 

  23. Grantab R, Shenoy V B, Ruoff R S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science, 2010, 330(6006): 946–948

    Article  ADS  Google Scholar 

  24. Nardelli M B, Yakobson B I, Bernholc J. Brittle and ductile behavior in carbon nanotubes. Phys Rev Lett, 1998, 81(21): 4656–4659

    Article  ADS  Google Scholar 

  25. Pei Q X, Zhang Y W, Shenoy V B. A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon, 2010, 48(3): 898–904

    Article  Google Scholar 

  26. Shenderova O A, Brenner D W, Omeltchenko A, et al. Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B, 2000, 61(6): 3877–3888

    Article  ADS  Google Scholar 

  27. Tang C, Guo W, Chen C. Mechanism for superelongation of carbon nanotubes at high temperatures. Phys Rev Lett, 2008, 100(17): 175501

    Article  ADS  Google Scholar 

  28. Zhao H, Aluru N R, Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys, 2010, 108(6): 064321

    Article  ADS  Google Scholar 

  29. Zhao H, Min K, Aluru N R. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett, 2009, 9(8): 3012–3015

    Article  ADS  Google Scholar 

  30. Marques M A L, Troiani H E, Miki-Yoshida M, et al. On the breaking of carbon nanotubes under tension. Nano Lett, 2004, 4(5): 811–815

    Article  ADS  Google Scholar 

  31. Reddy C D, Rajendran S, Liew K M. Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology, 2006, 17(3): 864–870

    Article  ADS  Google Scholar 

  32. Ma F, Sun Y J, Ma D Y, et al. Reversible phase transformation in graphene nano-ribbons: Lattice shearing based mechanism. Acta Mater, 2011, 59(17): 6783–6789

    Article  Google Scholar 

  33. Jin Y, Yuan F G. Nanoscopic Modeling of fracture of 2D graphene systems. J Nanosci Nanotechnol, 2005, 5(4): 601–608

    Article  Google Scholar 

  34. Tang C, Guo W, Chen C. Structural and mechanical properties of partially unzipped carbon nanotubes. Phys Rev B, 2011, 83(7): 075410

    Article  ADS  Google Scholar 

  35. Dumitrica T, Hua M, Yakobson B I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc Natl Acad Sci USA, 2006, 103(16): 6105–6109

    Article  ADS  Google Scholar 

  36. Hao F, Fang D, Xu Z. Mechanical and thermal transport properties of graphene with defects. Appl Phys Lett, 2011, 99(4): 041901

    Article  ADS  Google Scholar 

  37. Xu Z. Graphene nano-ribbons under tension. J Comput Theor Nanosci, 2009, 6(3): 625–628

    Article  Google Scholar 

  38. Qi Z, Zhao F, Zhou X, et al. A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons. Nanotechnology, 2010, 21(26): 265702

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TienChong Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, L., Chang, T. Loading direction dependent mechanical behavior of graphene under shear strain. Sci. China Phys. Mech. Astron. 55, 1083–1087 (2012). https://doi.org/10.1007/s11433-012-4721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4721-x

Keywords

Navigation