Skip to main content
Log in

Effects of Mo on phase structure and up-conversion emissions of Er:Al2O3 nanocrystals

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A simple and efficient approach was presented to enhance up-conversion emissions significantly for the Er:Al2O3 nanocrystals by Mo support (Er-Mo:Al2O3) with a 976 nm laser diode excitation. Mo support had evident effects on the phase structure and up-conversion emissions for the Er:Al2O3 nanocrystals, which promoted the θ-(Al,Er)2O3 transformed to α-(Al,Er,Mo)2O3 phase. Compared with the Er:Al2O3, the maximal green and red up-conversion emissions intensities increased about 3×103 and 1.4×102 times for the Er-Mo:Al2O3 nanocrystals, respectively. It suggests that the enhancement of up-conversion emissions is caused by the high excited state energy transfer process from |4I15/2, 3T2> state of the Er3+-MoO4 2− dimer to the 4F7/2 level of Er3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer J C, Cuccia L A, Capobianco J A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett, 2007, 7: 847–852

    Article  ADS  Google Scholar 

  2. Sivakumar S, van Veggel F C J M, May P S. Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy-transfer (Hetero-LEET): A new up-conversion process. J Am Chem Soc, 2007, 129: 620–625

    Article  Google Scholar 

  3. Wang X, Liu X G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc, 2008, 130: 5642–5643

    Article  Google Scholar 

  4. Dong B, Cao B S, He Y Y, et al. Temperature sensing and in-vivo-imaging by molybdenum sensitised visible upconversion luminescence of rare-earth oxides. Adv Mater, 2012, 24(15): 1987–1993

    Article  Google Scholar 

  5. Wageh S, Zhao S L, Xu Z. An optical and structural investigation into CdTe nanocrystals embedded into the tellurium lithium borophosphate glass matrix. Sci China-Phys Mech Astron, 2010, 53(5): 818–822

    Article  ADS  Google Scholar 

  6. Ding B F. Investigation of structural and magnetic properties of Ni implanted rutile. Sci China Phys Mech Astron, 2012, 55(2): 247–251

    Article  ADS  Google Scholar 

  7. Wang M, Mi C C, Wang W X, et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa Cells by using NaYF4:Yb, Er upconversion nanoparticles. ACS Nano, 2009, 3: 1580–1586

    Article  Google Scholar 

  8. Wang X J, Yuan G, Isshiki H, et al. Photoluminescence enhancement and high gain amplification of ErxY2−x SiO5 waveguide. J Appl Phys, 2010, 108: 013506

    Article  ADS  Google Scholar 

  9. Qi H Z, Yan B, Li C K, et al. Synthesis and characterization of water-soluble magnetite nanocrystals via one-step sol-gel pathway. Sci China-Phys Mech Astron, 2011, 54(7): 1239–1243

    Article  ADS  Google Scholar 

  10. Feng Z Q, Bai L, Cao B S, et al. Er3+-Yb3+ codoped borosilicate glass for optical thermometry. Sci China-Phys Mech Astron, 2010, 53: 848–851

    Article  ADS  Google Scholar 

  11. Liu C B, Wei K F, Yao C F, et al. Investigation of microstructure modification of C-doped a-SiO2/Si after Pb-ion irradiation. Sci China-Phys Mech Astron, 2012, 55(2): 242–246

    Article  ADS  Google Scholar 

  12. Auzel F. Compteur quantique par transfert denergie entre deux ions de terres rares dans un tungstate mixte ET dans un verre. C R Acad Sci (Paris), 1966, 262B: 1016–1019

    Google Scholar 

  13. Krämer K W, Biner D, Frei G, et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater, 2004, 16: 1244–1251

    Article  Google Scholar 

  14. Wang G F, Peng Q, Li Y D. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J Am Chem Soc, 2009, 131: 14200–12401

    Article  Google Scholar 

  15. Heer S, Kompe K, Güdel H U, et al. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater, 2004, 16: 23–24

    Article  Google Scholar 

  16. Dong B, Feng Z Q, Zu J F, et al. Strong visible up-conversion emissions and thermometric applications of Er3+-Yb3+ codoped Al2O3 prepared by the sol-gel method. J Sol Gel Sci Tech, 2008, 48: 303–307

    Article  Google Scholar 

  17. Dong B, Cao B S, Feng Z Q, et al. Optical temperature sensing through extraordinary enhancement of green up-conversion emissions for Er-Yb-Mo:Al2O3. Sens Actuators B, 2012, 165: 34–37

    Article  Google Scholar 

  18. Li Z P, Dong B, He Y Y, et al. Selective enhancement of green upconversion emissions of Er3+:Yb3Al5O12 nanocrystals by high excited state energy transfer with Yb3+-Mn2+ dimer sensitizing. J Lumin, 2012, 132: 1646–1648

    Article  Google Scholar 

  19. Dong B, Li C R, Wang X J. Two color up-conversion emissions of Er3+-doped Al2O3 nanopowders prepared by non-aqueous sol-gel method. J Sol Gel Sci Technol, 2007, 44: 161–166

    Article  Google Scholar 

  20. Dong B, Liu D P, Wang X J, et al. Optical thermometry through in frared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3. Appl Phys Lett, 2007, 90: 181117

    Article  ADS  Google Scholar 

  21. Chen G Y, Liu H C, Somesfalean G, et al. Enhancement of the upconversion radiation in Y2O3:Er3+ nanocrystals by codoping with Li+ ions. Appl Phys Lett, 2008, 92: 113114

    Article  ADS  Google Scholar 

  22. Aisaka T, Fujii M, Hayashi S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Appl Phys Lett, 2008, 92: 132105

    Article  ADS  Google Scholar 

  23. Ayyub P, Palkar V R, Chattopadhyay S, et al. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys Rev B, 1995, 51: 6135–6138

    Article  ADS  Google Scholar 

  24. Patra A, Friend C S, Kapoor R, et al. Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals. Appl Phys Lett, 2003, 83: 284–286

    Article  ADS  Google Scholar 

  25. Reinhard C, Valiente R, Güdel H U. Exchange-induced upconversion in Rb2MnCl4: Yb3+. J Phys Chem B, 2002, 106: 10051–10057

    Article  Google Scholar 

  26. Gerner P, Reinhard C, Güdel H U. Cooperative near-IR to visible photon upconversion in Yb3+-doped MnCl2 and MnBr2: Comparison with a series of Yb3+-doped Mn2+ halides. Chem Eur J, 2004, 10: 4735–4741

    Article  Google Scholar 

  27. Tanabe Y, Moriya T, Sugano S. Magnon-induced electric dipole transition moment. Phys Rev Lett, 1965, 15: 1023–1025

    Article  ADS  Google Scholar 

  28. Vetrone F, Boyer J C, Capobianco J A, et al. Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ Nanocrystals. J Appl Phys, 2004, 96: 661–667

    Article  ADS  Google Scholar 

  29. Chen S Y, Ting C C, Hsieh W F. Comparison of visible fluorescence properties between sol-gel derived Er3+-Yb3+ and Er3+-Y3+ co-doped TiO2 films. Thin Solid Films, 2003, 434: 171–177

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Cong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Cong, Y. Effects of Mo on phase structure and up-conversion emissions of Er:Al2O3 nanocrystals. Sci. China Phys. Mech. Astron. 55, 1417–1421 (2012). https://doi.org/10.1007/s11433-012-4813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4813-7

Keywords

Navigation