Skip to main content
Log in

Prediction of nonlocal scale parameter for carbon nanotubes

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Based on the theory of nonlocal elasticity, a nonlocal shell model accounting for the small scale effect is developed for the bending characteristics of CNTs subjected to the concentrated load. With this nonlocal shell model, explicit expressions are derived for the bending solutions. To extract the proper values of nonlocal scale parameter, we have made molecular dynamics (MD) simulations for various radii and lengths of armchair and zigzag CNTs, the results of which are matched with those of nonlocal continuum model. It is found that the present nonlocal elastic shell model with its appropriate values of nonlocal scale parameter has the capability to predict the bending behavior of CNTs, which is comparable with the results of MD simulations. Moreover, exact closed form solutions for the nonlocal scale parameter for zigzag and armchair CNTs are obtained. The results show that nonlocal scale parameter is independent of the length of CNTs, and dependent on the radius of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S. Helical micro-tubes of graphite carbon. Nature, 1991, 354: 56–58

    Article  ADS  Google Scholar 

  2. Li C, Chou T W. A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct, 2003, 40: 2487–2499

    Article  MATH  Google Scholar 

  3. Phadikar J K, Pradhan S C. Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput Mater Sci, 2010, 49: 492–499

    Article  Google Scholar 

  4. Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys, 1983, 54: 4703–4710

    Article  ADS  Google Scholar 

  5. Chen Y, Lee J D, Eskandarian A. Atomistic viewpoint of the applicability of microcontinuum theories. Int J Solids Struct, 2004, 41: 2085–2097

    Article  MATH  Google Scholar 

  6. Peddiesona J, Buchananb G R, McNitt R P. Application of nonlocal continuum models to nanotechnology. Int J Eng Sci, 2003, 41: 305–312

    Article  Google Scholar 

  7. Lu P. Dynamic analysis of axially prestressed micro/nanobeam structures based on nonlocal beam theory. J Appl Phys, 2007, 101: 073504

    Article  ADS  Google Scholar 

  8. Xu M. Free transverse vibrations of nano-to-micron scale beams. Proc R Soc London Ser A, 2006, 462: 2977–2995

    Article  ADS  MATH  Google Scholar 

  9. Murmu T, Pradhan S C. Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J Appl Phys, 2009, 105: 064319

    Article  ADS  Google Scholar 

  10. Assadi A, Farshi B. Stability analysis of graphene based laminated composite sheets under non-uniform inplane loading by nonlocal elasticity. Appl Math Modelling, 2011, 35: 4541–4549

    Article  MathSciNet  MATH  Google Scholar 

  11. Shen L, Shen H S, Zhang C L. Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput Mater Sci, 2010, 48: 680–685

    Article  Google Scholar 

  12. Hu Y G, Liew K M, Wang Q, et al. Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J Mech Phys Solids, 2008, 56: 3475–3485

    Article  MATH  Google Scholar 

  13. Wang Y, Li F. Dynamical properties of nanotubes with nonlocal continuum theory: A review. 2012, in press, doi: 10.1007/s11433-012-4775-9

  14. Wang L, Hu H. Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B, 2005, 71: 195412

    Article  ADS  Google Scholar 

  15. Xie G Q, Han X, Liu G R, et al. Effect of small size-scale on the radial buckling pressure of a simply supported multi-walled carbon nanotube. Smart Mater Struct, 2006, 15: 1143–1149

    Article  ADS  Google Scholar 

  16. Wang Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys, 2005, 98: 124301

    Article  ADS  Google Scholar 

  17. Duan W H, Wang C M, Zhang Y Y. Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys, 2007, 101: 024305

    Article  ADS  Google Scholar 

  18. Zhang Y Q, Liu G R, Xie X Y. Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B, 2005, 71: 195404

    Article  ADS  Google Scholar 

  19. Sears A, Batra R C. Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B, 2004, 69: 235406

    Article  ADS  Google Scholar 

  20. Zhang Y Y, Tan V B C, Wang C M. Effect of chirality on buckling behavior of single-walled carbon nanotubes. J Appl Phys, 2006, 100: 074304

    Article  ADS  Google Scholar 

  21. Zhang Y Y, Wang C M, Duan W H, et al. Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology, 2009, 20: 395707

    Article  Google Scholar 

  22. Shen H S, Zhang C L. Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Compos Struct, 2010, 92: 1073–1084

    Article  Google Scholar 

  23. Chan K T, Zhao Y. The dispersion characteristics of the waves propagating in a spinning single-walled carbon nanotube. Sci China-Phys Mech Astron, 2011, 54(10): 1854–1865

    Article  ADS  Google Scholar 

  24. Ansari R, Rouhi H. Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal Flugge shell theory. J Eng Mater Tech Trans ASME, 2012, 134: 011008

    Article  Google Scholar 

  25. Arash B, Ansari R. Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Phys E-Low Dimensional Syst Nanostruct, 2010, 42: 2058–2064

    Article  ADS  Google Scholar 

  26. Wu L, Xu C. Bending analysis of circular cylindrical shell subjected to concentrated moving loads. J Shanghai Jiaotong Univ, 1989, 25: 45–54

    MathSciNet  Google Scholar 

  27. Swope W C, Andersen H C, Berens P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J Chem Phys, 1982, 76: 637–649

    Article  ADS  Google Scholar 

  28. Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys, 2000, 112: 6472–6486

    Article  ADS  Google Scholar 

  29. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 1984, 81: 511–519

    Article  ADS  Google Scholar 

  30. Hoover W G. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A, 1985, 31: 1695–1697

    Article  ADS  Google Scholar 

  31. Yakobson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys Rev Lett, 1996, 76: 2511–2514

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Han, Q. Prediction of nonlocal scale parameter for carbon nanotubes. Sci. China Phys. Mech. Astron. 55, 1670–1678 (2012). https://doi.org/10.1007/s11433-012-4826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4826-2

Keywords

Navigation