Skip to main content
Log in

Undeniable quantum state sharing with a five-atom cluster state in cavity QED

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We present an efficient scheme for undeniable five-party quantum state sharing(FQSTS) of an arbitrary single-atom state with a five-atom cluster state in cavity QED. The implementation of this scheme does not involve the joint-state measurement of multi-atoms, which makes it convenient in a practical application. The scheme is also insensitive to the cavity decay and the thermal field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blakley G R. Safeguarding Cryptographic Keys. In: Proceedings of the American Federation of Information Processing 1979 National Computer Conference, 1979. 313–317

  2. Shamir A. How to share a secret. Commun ACM, 1979, 22(11): 612–613

    Article  MathSciNet  MATH  Google Scholar 

  3. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  4. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162–168

    Article  ADS  Google Scholar 

  5. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307

    Article  ADS  Google Scholar 

  6. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  ADS  Google Scholar 

  7. Gottesman D. Theory of quantum secret sharing. Phys Rev A, 2000,61: 042311

    Article  MathSciNet  ADS  Google Scholar 

  8. Guo G P, Guo G C. Quantum secret sharing without entanglement. Phys Lett A, 2003, 310: 247–251

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bandyopadhyay S. Teleportation and secret sharing with pure entangled states. Phys Rev A, 2000, 62: 012308

    Article  ADS  Google Scholar 

  10. Tittel W, Zbinden H, Gisin N. Experimental demonstration of quantum secret sharing. Phys Rev A, 2001, 63: 042301

    Article  ADS  Google Scholar 

  11. Yang Y G, Wen Q Y. Comment on: “Efficient high-capacity quantum secret sharing with two-photon entanglement” [Phys. Lett. A 372 (2008) 1957]. Phys Lett A, 2009, 373(3): 396–398

    Article  ADS  MATH  Google Scholar 

  12. Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state sharing. Phys Rev Lett, 2004, 92: 177903

    Article  ADS  Google Scholar 

  13. Yang Y G, Wang Y, Chai H P, et al. Member expansion in quantum (t,n) threshold secret sharing schemes. Opt Commun, 2011, 284(13): 3479–3482

    Article  ADS  Google Scholar 

  14. Hsu L Y, Li C M. Quantum secret sharing using product states. Phys Rev A, 2005, 71: 022321

    Article  ADS  Google Scholar 

  15. Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys Rev A, 2005, 72: 022338

    Article  ADS  Google Scholar 

  16. Deng F G, Li X H, Li C Y, et al. Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys Rev A, 2005, 72: 044301

    Article  ADS  Google Scholar 

  17. Zhang Z J, Li Y, Man Z X. Multiparty quantum secret sharing. Phys Rev A, 2005, 71: 044301

    Article  MathSciNet  ADS  Google Scholar 

  18. Yang Y G, Chai H P, Wang Y, et al. Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Sci China-Phys Mech Astron, 2011, 54(9): 1619–1624

    Article  ADS  Google Scholar 

  19. Zhang Z J, Man Z X. Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys Rev A, 2005, 72: 022303

    Article  MathSciNet  ADS  Google Scholar 

  20. Li X H, Zhou P, Li C Y, et al. Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J Phys B-At Mol Opt Phys, 2006, 39(8): 1975–1983

    Article  ADS  Google Scholar 

  21. Yan F L, Gao T. Quantum secret sharing between multiparty and multiparty without entanglement. Phys Rev A, 2005, 72: 012304

    Article  ADS  Google Scholar 

  22. Yang Y G, Wen Q Y. Threshold multiparty quantum-information splitting via quantum channel encryption. Int J Quantum Inform, 2009, 7: 1249–1254

    Article  MATH  Google Scholar 

  23. Markham D, Sanders B C. Graph states for quantum secret sharing. Phys Rev A, 2008, 78: 042309

    Article  MathSciNet  ADS  Google Scholar 

  24. Sheng Y B, Deng F G, Zhou H Y. Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state. Eur Phys J D, 2008, 48(2): 279–284

    Article  ADS  Google Scholar 

  25. Deng F G, Zhou H Y, Long G L. Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys Lett A, 2005, 337: 329–334

    Article  ADS  MATH  Google Scholar 

  26. Muralidharan S, Panigrahi PK. Quantum-information splitting using multipartite cluster states. Phys Rev A, 2008, 78: 062333

    Article  ADS  Google Scholar 

  27. Menon J V, Paul N, Karumanchi S, et al. Quantum tasks using six qubit cluster states. arXiv: 0906.3874

  28. Muralidharan S, Jain S, Panigrahi P K. Splitting of quantum information using N-qubit linear cluster states. arXiv:0904.0563v2

  29. Yang Y G, Wang Y, Teng Y W, et al. Universal three-party quantum secret sharing against collective noise. Commun Theor Phys, 2011, 55(4): 589–593

    Article  ADS  Google Scholar 

  30. Lin S, Wen Q Y, Qin S J, et al. Multiparty quantum secret sharing with collective eavesdropping-check. Opt Commun, 2009, 282: 4455–4459

    Article  ADS  Google Scholar 

  31. Wang T Y, Wen Q Y, Gao F, et al. Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys Lett A, 2008, 373: 65–68

    Article  ADS  MATH  Google Scholar 

  32. Yang Y G, Wen Q Y. Circular threshold quantum secret sharing. Chin Phys B, 2008, 17: 419–423

    Article  ADS  Google Scholar 

  33. Qin S J, Gao F, Wen Q Y, et al. Cryptanalysis of the Hillery-Bužek-Berthiaume quantum secret-sharing protocol. Phys Rev A, 2007, 76: 062324

    Article  ADS  Google Scholar 

  34. Yang Y G, Wen Q Y. Threshold quantum secret sharing between multi-party and multi-party. Sci China-Phys Mech Astron, 2008, 51: 1308–1315

    Article  ADS  MATH  Google Scholar 

  35. Sun Y, Wen Q Y, Zhu F C. Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack. Opt Commun, 2010, 283: 181–183

    Article  ADS  Google Scholar 

  36. Lin S, Wen Q Y, Gao F, Qin S J, et al. Improving the security of multiparty quantum secret sharing based on the improved Boström-Felbinger protocol. Opt Commun, 2008, 281: 4553–4554

    Article  ADS  Google Scholar 

  37. Qin S J, Gao F, Wen Q Y, et al. A special attack on the multiparty quantum secret sharing of secure direct communication using single photons. Opt Commun, 2008, 281: 5472–5474

    Article  ADS  Google Scholar 

  38. Yang Y G, Teng Y W, Chai H P, et al. Verifiable quantum (k,n)-threshold secret key sharing. Int J Theor Phys, 2011, 50(3): 792–798

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun Y, Wen Q Y, Gao F. Multiparty quantum secret sharing based on Bell measurement. Opt Commun, 2009, 282: 3647–3651

    Article  ADS  Google Scholar 

  40. Yang Y G, Teng Y W, Chai H P, et al. Fault tolerant quantum secret sharing against collective noise. Phys Scr, 2011, 83(2): 025003

    Article  ADS  Google Scholar 

  41. Briegel H J, Raussendorf R. Persistent Entanglement in Arrays of Interacting Particles. Phys Rev Lett, 2001, 86: 910–913

    Article  ADS  Google Scholar 

  42. Hein M, Dür W, Briegel H J. Entanglement properties of multipartite entangled states under the influence of decoherence. Phys Rev A, 2005, 71: 032350

    Article  ADS  Google Scholar 

  43. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  ADS  Google Scholar 

  44. Shi R H, Huang L S, Yang W, et al. Asymmetric five-party quantum state sharing of an arbitrary m-qubit state. Eur Phys J D, 2010, 57: 287–291

    Article  ADS  Google Scholar 

  45. Shi R H, Huang L S, Yang W, et al. Asymmetric five-party quantum state sharing of an arbitrary m-qubit state. Eur Phys J D, 2010, 57(2): 287–291

    Article  ADS  Google Scholar 

  46. Hou K, Liu G H, Zhang X Y, et al. An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states. Quantum Info Process, 2011, 10: 463–473

    Article  MathSciNet  MATH  Google Scholar 

  47. Lu C Y, Zhou X Q, Guhne O, et al. Experimental entanglement of six photons in graph states. Nat Phys, 2007, 3: 91–95

    Article  Google Scholar 

  48. Cao W F, Yang Y G, Wen Q Y. Quantum secure direct communication with cluster states. Sci China-Phys Mech Astron, 2010, 53(71): 1271–1275

    ADS  Google Scholar 

  49. Hou K, Shi S H. Scheme for cloning an unknown entangled state with assistance via non-maximally entangled cluster states. Int J Theor Phys, 2009, 48: 167–177

    Article  MathSciNet  MATH  Google Scholar 

  50. Ma P C, Zhan Y B. Scheme for remotely preparing a four-particle entangled cluster-type state. Opt Commun, 2010, 283(12): 2640–2643

    Article  ADS  Google Scholar 

  51. Schlingemann D, Werner R F. Quantum error-correcting codes associated with graphs. Phys Rev A, 2001, 65: 012308

    Article  ADS  Google Scholar 

  52. Walther P, Resch K J, Rudolph T, et al. Experimental one-way quantum computing. Nature, 2005, 434: 169–176

    Article  ADS  Google Scholar 

  53. Ye L, Guo G C. Scheme for implementing quantum dense coding in cavity QED. Phys Rev A, 2005, 71: 034304

    Article  ADS  Google Scholar 

  54. Zheng S B. Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys Rev A, 2003, 68: 035801

    Article  ADS  Google Scholar 

  55. Li C Y, Zhou H Y; Wang Y. et al. Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett, 2005, 22: 1049–1052

    Article  ADS  Google Scholar 

  56. Gao F, Qin S J, Wen Q Y, et al. Asimple participant attack on the Bradler-Dusek protocol. Quantum Info Comput, 2007, 7: 329–334

    MathSciNet  MATH  Google Scholar 

  57. Gao F, Wen Q Y, Zhu F C. Comment on: “Quantum exam” [Phys. Lett. A 350 (2006) 174]. Phys Lett A, 2007, 360: 748–750

    Article  ADS  Google Scholar 

  58. Gao F, Qin S J, Wen Q Y, et al. Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt Commun, 2010, 283: 192–195

    Article  ADS  Google Scholar 

  59. Gao F, Guo F Z, Wen Q Y, et al. Comment on “Experimental Demonstration of a Quantum Protocol for Byzantine Agreement and Liar Detection”. Phys Rev Lett, 2008, 101: 208901

    Article  ADS  Google Scholar 

  60. Song T T, Zhang J, Gao F, et al. Participant attack on quantum secret sharing based on entanglement swapping. Chin Phys B, 2009, 18: 1333–1337

    Article  ADS  Google Scholar 

  61. Guo F Z, Qin S J, Gao F, et al. Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur Phys J D, 2010, 56: 445–448

    Article  ADS  Google Scholar 

  62. Yuan H, Liu Y M, Zhang W, et al. Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J Phys B, 2008, 41(14): 145506

    Article  ADS  Google Scholar 

  63. Guo Y, Deng H L. Preparation of Cluster States of Atomic Qubits in Cavity QED. Chin Phys Lett, 2010, 27: 040309

    Article  ADS  Google Scholar 

  64. Wang X W, Yang G J. Schemes for preparing atomic qubit cluster states in cavity QED. Opt Commun, 2008, 281: 5282–5285

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuGuang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Xia, J., Jia, X. et al. Undeniable quantum state sharing with a five-atom cluster state in cavity QED. Sci. China Phys. Mech. Astron. 55, 2439–2444 (2012). https://doi.org/10.1007/s11433-012-4925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4925-0

Keywords

Navigation