Skip to main content
Log in

Detached-eddy simulations and analyses on new vortical flows over a 76/40° double delta wing

  • Article
  • The 4th Tsien Hsue Shen Memorial Lecture
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation (DES). A new type of cross-flow vortex is suggested. A vortex was initially generated near the junction of the strake and wing, which then moved towards the wing tip at certain wavelength and speed. Analyses were made in detail on the mechanism of the generation of the cross-flow vortex, that is, the inviscid cross-flow instability which differs from that of the swept blunt wing. Cross-section topology of the cross-flow vortex is also investigated, and the wavelength of the vortex array and the characteristic frequency are given. The analyses showed that the cross-flow vortices have an influence on the pressure distribution, which can cause a 10%–20% deviation from the averaged distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujii K. Progress and future prospects of CFD in aerospace—wind tunnel and beyond. Prog Aerospace Sci, 2005, 41: 455–470

    Article  ADS  Google Scholar 

  2. Yang F L, Zhou S J, Wang G C. Detached eddy simulation of the liquid mixing in stirred tanks. Comput Fluids, 2012, 64: 74–82

    Article  MathSciNet  Google Scholar 

  3. Huang J B, Xiao Z X, Liu J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES. Sci China-Phys Mech Astron, 2012, 55(2): 260–271

    Article  ADS  Google Scholar 

  4. Zhang Y F, Chen H X, Fu S. A Karman-Vortex generator for passive separation control in a conical diffuser. Sci China-Phys Mech Astron, 2012, 55(5): 828–836

    Article  ADS  MATH  Google Scholar 

  5. Liang J Y, Kang S. Investigation of film cooling on the leading edge of turbine blade based on detached eddy simulation. Sci China-Tech Sci, 2012, 55(8): 2191–2198

    Article  Google Scholar 

  6. Chen S Y, Chen Y C, Xia Z H, et al. Constrained large-eddy simulation and detached eddy simulation of flow past a commercial aircraft at 14 Degrees Angle of Attack. Sci China-Phys Mech Astron, 2013, 56(2): 270–276

    Article  MathSciNet  ADS  Google Scholar 

  7. Xiao Z X, Liu J, Luo K Y, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches. AIAA J, 2013, 51(1): 107–125

    Article  ADS  Google Scholar 

  8. Cunningham A M, Den Boer R G. Low-speed unsteady aerodynamics of a pitching strake wing at high incidence — Part II: Harmonic Analysis. J Aircraft, 1990, 27(1): 31–41

    Article  Google Scholar 

  9. Verhaagen N G, Jenkins L N, Kern S B. A study of the vortex flow over a 76/40-deg double-delta wing. AIAA Paper, 1995, AIAA-95-0650

    Google Scholar 

  10. Verhaagen N G. Effects of Reynolds number on flow over 76/40-degree double-delta wings. J Aircraft, 2002, 39(6): 1045–1052

    Article  Google Scholar 

  11. Grismer D S, Nelson R C, Ely W L. Influence of sideslip on double delta wing aerodynamics. J Aircraft, 1995, 32(2): 451–453

    Article  Google Scholar 

  12. Atashbaz G, Ommian M. Experimental investigation of vortex flow over an 80 degree/60 degree double delta wing at sideslip. J Aircraft, 2006, 43(3): 840–843

    Article  Google Scholar 

  13. Ghee T, Gonzalez H, Findlay D. Experimental investigation of vortical-tail interaction on a 76/40 degree double-delta wing. AIAA Paper, 1999, AIAA-99-3159

    Google Scholar 

  14. Erickson G E, Gonzalez H A. Pressure-sensitive paint investigation of double-delta wing vortex flow manipulation. AIAA Paper, 2005, AIAA-2005-1059

    Google Scholar 

  15. Sohn M, Chung H. Effects of strake planform change on vortex flow of a double-delta wing. J Aircraft, 2007, 44(6): 1842–1848

    Article  Google Scholar 

  16. Kern S B. Vortex fow control using fillets on a double-delta wing. J Aircraft, 1993, 30(6): 818–825

    Article  Google Scholar 

  17. Ekaterinaris J A, Coutley R L, Platzer M F. Numerical investigation of high incidence flow over a double-delta Wing. J Aircraft, 1995, 32(3): 457–463

    Article  Google Scholar 

  18. Ekaterinaris J A, Schiff L B. Navier-Stokes solutions for an oscillating double-delta wing. J Aircraft, 1995, 32(2): 228–234

    Article  Google Scholar 

  19. Arasawa T, Fujii K, Miyaji K. High-order compact difference scheme applied to double-delta wing vortical flows. J Aircraft, 2004, 41(4): 753–757

    Article  Google Scholar 

  20. Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Advances in DNS/LES, Greyden Press, Columbus, OH, USA, 1997

    Google Scholar 

  21. Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale, 1994: 5-21

  22. Sun D, Li Q, Zhang H X. Investigations on massively separated flows of the 76/40° double-delta wing using detached-eddy simulation. In: Proceedings of the fifteenth Chinese National Conference on Computational Fluid Dynamics,Yantai, China, 2012. 974–980

    Google Scholar 

  23. Norberg C. An experimental investigation of the flow around a circular cylinder: Influence of aspect ratio. J Fluid Mech, 1994, 258: 287–316

    Article  ADS  Google Scholar 

  24. Kravchenko A, Moin P. Numerical studies of flow over a circular cylinder at Re D=3900. Phys Fluids, 2000, 12(2): 403–417

    Article  ADS  MATH  Google Scholar 

  25. Tufo H M, Fischer P F, Papka M E, et al. Numerical simulation and immersive visualization of hairpin vortices. In: Conference on High Performance Networking and Computing archive. In: Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM), 1999

    Google Scholar 

  26. Gaponenko V R, Ivanov A V, Kachanov Y S, et al. Swept-wing boundary-layer receptivity to surface non-uniformities. J Fluid Mech, 2002, 461: 93–126

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Squire H B, Jones J G, Stanbrook A. Investigation of the characteristics of some plane and cambered 65 deg delta wings at mach numbers from 0.7 to 2.0. ARC, R&M., 3305, 1961

    Google Scholar 

  28. Gad-el-Hak M, Blackwelder R F. The discrete vortices from a delta wing. AIAA J, 1985, 23(6): 961–962

    Article  ADS  Google Scholar 

  29. Payne F M, Ng T T, Nelson R C, et al. Visualization and wake surveys of vortical flow over a delta wing. AIAA J, 1988, 26: 137–143

    Article  ADS  Google Scholar 

  30. Reynolds G A and Abtahi A A. Three-dimensional vortex development, breakdown, and control. AIAA Paper, 1989, AIAA-89-0998

    Google Scholar 

  31. Verhaagen N G, Meeder J P, Verheltst J M. Boundary layer effects on the flow of a leading edge vortex. AIAA Paper, 1993, AIAA-93-3463-CP

    Google Scholar 

  32. Washburn A E, Visser K D. Evolution of the vortical structures in the shear layer of delta wings. AIAA Paper, 1994, AIAA-94-2317

    Google Scholar 

  33. Gordnier R E, Visbal M R. Unsteady vortex structure over a delta wing. J Aircraft, 1994, 31(1): 243–248

    Article  Google Scholar 

  34. Visbal M R, Gordnier R E. Origin of computed unsteadiness in the shear layer of delta wings. J Aircraft, 1995, 32(5): 1146–1148

    Article  Google Scholar 

  35. Riley A J, Lowson M V. Development of a three-dimensional free shear layer. J Fluid Mech, 1998, 369: 49–89

    MathSciNet  ADS  MATH  Google Scholar 

  36. Morton S, Forsythe J, Mitchell A, et al. Detached-eddy simulations and reynolds-averaged Navier-Stokes simulations of delta wing vortical flowfields. J Fluids Eng, 2002, 124(4): 924–932

    Article  Google Scholar 

  37. Mitchell A M, Molton P. Vortical substructures in the shear layers forming leading-edge vortices. AIAA J, 2002, 40(8): 1689–1692

    Article  ADS  Google Scholar 

  38. Visbal M R, Gordnier R E. Origin of Stationary Shear-Layer Sub-Structures above Delta Wings. RTO Rep-84, Chapter 12, 2004

    Google Scholar 

  39. Mitchell A M, Morton S A, Forsythe J R, et al. Analysis of delta-wing vortical substructures using detached-eddy simulation. AIAA J, 2006, 44(5): 964–972

    Article  ADS  Google Scholar 

  40. Morton S. Detached-eddy simulations of vortex breakdown over a 70-degree delta wing. J Aircraft, 2009, 46(3): 746–755

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Sun, D. & Zhang, H. Detached-eddy simulations and analyses on new vortical flows over a 76/40° double delta wing. Sci. China Phys. Mech. Astron. 56, 1062–1073 (2013). https://doi.org/10.1007/s11433-013-5105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5105-6

Keywords

Navigation