Skip to main content
Log in

High-efficiency quantum steganography based on the tensor product of Bell states

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we first propose a hidden rule among the secure message, the initial tensor product of two Bell states and the final tensor product when respectively applying local unitary transformations to the first particle of the two initial Bell states, and then present a high-efficiency quantum steganography protocol under the control of the hidden rule. In the proposed quantum steganography scheme, a hidden channel is established to transfer a secret message within any quantum secure direct communication (QSDC) scheme that is based on 2-level quantum states and unitary transformations. The secret message hiding/unhiding process is linked with the QSDC process only by unitary transformations. To accurately describe the capacity of a steganography scheme, a quantitative measure, named embedding efficiency, is introduced in this paper. The performance analysis shows that the proposed steganography scheme achieves a high efficiency as well as a good imperceptibility. Moreover, it is shown that this scheme can resist all serious attacks including the intercept-resend attack, measurement-resend attack, auxiliary particle attack and even the Denial of Service attack. To improve the efficiency of the proposed scheme, the hidden rule is extended based on the tensor product of multiple Bell states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trithemius J. Steganographia. Frankfurt, 1606

    Google Scholar 

  2. Simmons G J. Advances in cryptology. In: Proceedings of Crypto 83. NewYork: Plenum Press, 1984. 51–67

    Google Scholar 

  3. Bailey K, Curran K. An evaluation of image based steganography methods. Multimed Tools Appl, 2006, 30: 55–88

    Article  Google Scholar 

  4. Lin E T, Eskicioglu A M, Lagendijk R L, et al. Advances in digital video content protection. Proc IEEE, 2005, 93: 171–183

    Article  Google Scholar 

  5. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. New York: IEEE, 1984. 175–179

    Google Scholar 

  6. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell’s theorem. Phys Rev Lett, 1992, 68: 557–559

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Goldenberg L, Vaidman L. Quantum cryptography based on orthogonal states. Phys Rev Lett, 1995, 75: 1239–1243

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Zhou N R, Wang L J, Gong L H, et al. Quantum deterministic key distribution protocols based on teleportation and entanglement swapping. Opt Commun, 2011, 284: 4836–4842

    Article  ADS  Google Scholar 

  10. Chen X B, Niu X X, Zhou X J, et al. Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf Process, 2013, 12: 365–380

    Article  ADS  MATH  Google Scholar 

  11. Chen X B, Wang T Y, Du J Z, et al. Controlled quantum secure direct communication with quantum encryption. Int J Quant Inform, 2008, 6: 543–551

    Article  MATH  Google Scholar 

  12. Chen X B, Xu G, Yang Y X, et al. Centrally controlled quantum teleportation. Opt Commun, 2010, 283: 4802–4809

    Article  ADS  Google Scholar 

  13. Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  14. Gottesman D. Theory of quantum secret sharing. Phys Rev A, 2000, 61: 042311

    Article  MathSciNet  ADS  Google Scholar 

  15. Terhal B M, DiVincenzo D P, Leung D W. Hiding bits in Bell states. Phys Rev Lett, 2001, 86: 5807–5810

    Article  ADS  Google Scholar 

  16. Eggeling T, Werner R F. Hiding classical data in multipartite quantum states. Phys Rev Lett, 2002, 89: 097905

    Article  ADS  Google Scholar 

  17. DiVincenzo D P, Hayden P A, Terhal B M. Quantum data hiding. IEEE Trans Inf Theory, 2002, 48: 580–599

    Article  MATH  Google Scholar 

  18. Guo G C, Guo G P. Quantum data hiding with spontaneous parameter down-conversion. Phys Rev A, 2003, 68: 044303

    Article  ADS  Google Scholar 

  19. Hayden P, Leung D, Smith G. Multiparty data hiding of quantum information. Phys Rev A, 2005, 71: 062339

    Article  ADS  Google Scholar 

  20. Chattopadhyay I, Sarkar D. Local indistinguishability and possibility of hiding cbits in activable bound entangled states. Phys Lett A, 2007, 365: 273–277

    Article  ADS  MATH  Google Scholar 

  21. Zhang D X, Liao X Y. A quantum information hiding scheme using orthogonal product states. Wseas Trans Comput, 2007, 6: 757–762

    Google Scholar 

  22. Matthews W, Wehner S, Winter A. Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun Math Phys, 2009, 291: 813–843

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Gea-Banacloche J. Hiding messages in quantum data. J Math Phys, 2002, 43: 4531–4536

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Worley G G. Quantum watermarking by frequency of error when observing qubits in dissimilar bases. arXiv: Quant-ph/0401041v2, 2004

    Google Scholar 

  25. Matin K. Steganographic communication with quantum information. Lect Note Comput Sci, 2007, 4567: 32–49

    Article  ADS  Google Scholar 

  26. Mogos G. Stego quantum algorithm. In: International Symposium on Computer Science and its Applications, Washington: IEEE Computer Society, 2008. 187–190

    Chapter  Google Scholar 

  27. Mogos G. A quantum way to data hiding. Int J Multimed Ubiquitous Eng, 2009, 4: 13–20

    Google Scholar 

  28. Liao X, Wen Q Y, Sun Y, et al. Multi-party covert communication with steganography and quantum secret sharing. J Syst Softw, 2010, 83: 1801–1804

    Article  Google Scholar 

  29. Shaw B A, Brun T A. Quantum steganography with noisy quantum channels. Phys Rev A, 2011, 83: 022310

    Article  ADS  Google Scholar 

  30. Qu Z G, Chen X B, Niu X X, et al. Novel quantum steganography with large payload. Opt Commun, 2010, 283: 4782–4786

    Article  ADS  Google Scholar 

  31. Qu Z G, Chen X B, Niu X X, et al. Quantum steganography with large payload based on entanglement swapping of χ-type entangled states. Opt Commun, 2011, 284: 2075–2082

    Article  ADS  Google Scholar 

  32. Fatahi N, Naseri M. Quantum watermarking using entanglement swapping. Int J Theor Phys, 2012, 51: 2094–2100

    Article  MathSciNet  MATH  Google Scholar 

  33. Nielsen M A, Chuang I L. Quantum computation and quantum information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  34. Lin S, Wen Q Y, Gao F, et al. Quantum secure direct communication with χ-type entangled states. Phys Rev A, 2008, 78: 064304

    Article  ADS  Google Scholar 

  35. Cai Q Y, Li B W. Improving the capacity of the Bostroem-Felbinger protocol. Phys Rev A, 2004, 69: 054301

    Article  ADS  Google Scholar 

  36. Ashok J, Raj Y, Munishankaraiah S, et al. Steganography: An overview. Int J Eng Sci Technol, 2010, 2: 5985–5992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuBo Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Chen, X., Niu, X. et al. High-efficiency quantum steganography based on the tensor product of Bell states. Sci. China Phys. Mech. Astron. 56, 1745–1754 (2013). https://doi.org/10.1007/s11433-013-5151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5151-0

Keywords

Navigation