Skip to main content
Log in

Measuring the kinetic parameters of saltating sand grains using a high-speed digital camera

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A high-speed digital camera is used to record the saltation of three sand samples (diameter range: 300–500, 200–300 and 100–125 μm). This is followed by an overlapping particle tracking algorithm to reconstruct the saltating trajectory and the differential scheme to abstract the kinetic parameters of saltating grains. The velocity results confirm the propagating feature of saltation in maintaining near-face aeolian sand transport. Moreover, the acceleration of saltating sand grains was obtained directly from the reconstructed trajectory, and the results reveal that the climbing stage of the saltating trajectory represents an critical process of energy transfer while the sand grains travel through air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagnold R A. The Physics of Blown Sand and Desert Dunes. London: Methuen, 1941

    Google Scholar 

  2. White B R, Schulz J C. Magnus effect on saltation. J Fluid Mech, 1977, 81: 497–512

    Article  ADS  Google Scholar 

  3. Anderson R S, Haff P K. Simulation of aeolian saltation. Science, 1988, 241: 820–823

    Article  ADS  Google Scholar 

  4. Anderson R S, Sorensen M, Willetts B B. A review of recent progress in our understanding of aeolian sediment transport. Acta Mech Suppl, 1991, 1: 1–20

    Article  Google Scholar 

  5. McEwan I K, Willetts B B. Numerical model of the saltation cloud. Acta Mech Suppl 1991, l: 53–66

    Article  Google Scholar 

  6. Sorensen M. An analytic model of wind-blown sand transport. Acta Mech Suppl, 1991, 1: 67–82

    Article  MathSciNet  Google Scholar 

  7. Spies P J, McEwan I K. Equilibration of saltation. Earth Surf Processes Landforms, 2000, 25: 437–453

    Article  ADS  Google Scholar 

  8. Andreotti B, Claudin P, Douady S. Selection of dune shapes and velocities. Part 1: Dynamics of sand, wind and barchans. Eur Phys J B, 2002, 28: 321–339

    Article  ADS  Google Scholar 

  9. Wang Y, Wang D W, Wang L, et al. Measurement of sand creep on a flat sand bed using a high-speed digital camera. Sedimentology, 2009, 56: 1705–1712

    Article  ADS  Google Scholar 

  10. Zhang W, Kang J H, Lee S J. Tracking of saltating sand trajectories over a flat surface embedded in an atmospheric boundary layer. Geomorphology, 2007, 86: 320–321

    Article  ADS  Google Scholar 

  11. Zhang W, Wang Y, Lee S J. Two-phase measurements of wind and saltating sand in an atmospheric boundary layer. Geomorphology, 2007, 88: 109–119

    Article  ADS  Google Scholar 

  12. Willetts B B, Rice M A. Collisions in aeolian saltation. Acta Mech, 1986, 63: 255–265

    Article  Google Scholar 

  13. McEwan I K, Willetts B B, Rice M A. The grain/bed collision in sand transport by wind. Sedimentology, 1992, 39: 971–981

    Article  ADS  Google Scholar 

  14. Rice M A, Willetts B B, McEwan I K. Observation of collisions of saltating grains with a granular bed from high-speed cine-film. Sedimentology, 1996, 43: 21–31

    Article  ADS  Google Scholar 

  15. Mitha S, Tran M Q, Werner B T, et al. The grain-bed impact process in aeolian saltation. Acta Mech, 1986, 63: 267–278

    Article  Google Scholar 

  16. Nalpanis P, Hunt J C R, Barrett C F. Saltating particles over flat beds. J Fluid Mech, 1993, 251: 661–685

    Article  ADS  Google Scholar 

  17. Uemura T, Yamamoto F, Ohmi K. A high-speed algorithm of image analysis for real time measurement of a two-dimensional velocity distribution. Flow Visualization ASME FED, 1989, 85: 129–134

    Google Scholar 

  18. Nishino K, Kasagi N, Hirata M. Three-dimensional particle tracking velocimetry based on automated digital image processing. J Fluid Eng, 1989, 111: 384–391

    Article  Google Scholar 

  19. Okamoto K, Hassan Y A, Schmidl W D. New tracking algorithm for particle image velocimetry. Exp Fluids, 1995, 19: 342–347

    Article  Google Scholar 

  20. Baek S J, Lee S J. A new two-frame particle tracking algorithm using match probability. Exp Fluids, 1996, 22: 23–32

    Article  Google Scholar 

  21. Song X Q, Yamamoto F, Iguchi M, et al. A new tracking algorithm of PIV and removal of spurious vectors using Delaunay Tessellation. Exp Fluids, 1999, 26: 371–380

    Article  Google Scholar 

  22. Ishikawa M, Murai Y, Wada A, et al. A novel algorithm for particle tracking velocimetry using the velocity gradient tensor. Exp Fluids, 2000, 29: 519–531

    Article  Google Scholar 

  23. Ohmi K, Li H Y. Particle-tracking velocimetry with new algorithms. Meas Sci Technol, 2000, 11: 603–616

    Article  ADS  Google Scholar 

  24. Wang D W, Wang Y, Yang B, et al. Statistical analysis of sand grain/bed collision process recorded by high-speed digital camera. Sedimentology, 2008, 55: 461–470

    Article  ADS  Google Scholar 

  25. Barry B A. Errors in Practical Measurement in Science, Engineering, and Technology. New York: Wiley, 1978

    Google Scholar 

  26. Nicholas T, Xu H T, Eberhard B. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp Fluids, 2006, 40: 301–313

    Article  Google Scholar 

  27. Saffman P G. The lift on a small sphere in a slow shear flow. J Fluid Mech, 1965, 6: 385–400

    Article  MathSciNet  ADS  Google Scholar 

  28. Rubinow A, Keller J. The transverse force on a spinning sphere moving in a viscous fluid. J Fluid Mech, 1991, 111: 447–459

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Y. & Jia, P. Measuring the kinetic parameters of saltating sand grains using a high-speed digital camera. Sci. China Phys. Mech. Astron. 57, 1137–1143 (2014). https://doi.org/10.1007/s11433-013-5284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5284-1

Keywords

Navigation