Skip to main content
Log in

Robust EPR-pairs-based quantum secure communication with authentication resisting collective noise

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This work presents two robust quantum secure communication schemes with authentication based on Einstein-Podolsky-Rosen (EPR) pairs, which can withstand collective noises. Two users previously share an identity string representing their identities. The identity string is encoded as decoherence-free states (termed logical qubits), respectively, over the two collective noisy channels, which are used as decoy photons. By using the decoy photons, both the authentication of two users and the detection of eavesdropping were implemented. The use of logical qubits not only guaranteed the high fidelity of exchanged secret message, but also prevented the eavesdroppers to eavesdrop beneath a mask of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE, 1984. 175–179

    Google Scholar 

  2. Bennett C H. Quantum cryptography using any two nonorthgonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  ADS  Google Scholar 

  4. Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  5. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69(5): 052319

    Article  ADS  Google Scholar 

  6. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  7. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

    Article  ADS  Google Scholar 

  8. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149

    Article  ADS  Google Scholar 

  9. Wang C, Hao L, Song S Y, et al. Quantum direct communication based on quantum search algorithm. Int J Quantum Inf, 2010, 8(3): 443–450

    Article  MATH  Google Scholar 

  10. Gu B, Huang Y G, Fang X, et al. Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun Theor Phys, 2011, 56: 659–663

    Article  MATH  ADS  Google Scholar 

  11. Gu B, Huang Y G, Fang X, et al. A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B, 2011, 20: 100309

    Article  ADS  Google Scholar 

  12. Shi J, Gong Y X, Xu P, et al. Quantum secure direct communication by using three-dimensional hyperentanglement. Commun Theor Phys, 2011, 56: 831

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Wang T J, Li T, Du F F, et al. High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin Phys Lett, 2011, 28: 040305

    Article  ADS  Google Scholar 

  14. Sun Z W, Du R G, Long D Y. Quantum secure direct communication with two-photon four-qubit cluster states. Int J Theor Phys, 2012, 51: 1946–1952

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu D, Chen J L, Jiang W. High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int J Theor Phys, 2012, 51: 2923–2929

    Article  MATH  Google Scholar 

  16. Chang Y, Zhang S B, Yan L L, et al. A multiparty controlled bidirectional quantum secure direct communication and authentication protocol based on EPR pairs. Chin Phys Lett, 2013, 30: 060301

    Article  ADS  Google Scholar 

  17. Chang Y, Zhang S B, Yan L L. A bidirectional quantum secure direct communication protocol based on five-particle cluster state. Chin Phys Lett, 2013, 30: 090301

    Article  ADS  Google Scholar 

  18. Walton Z D, Abouraddy A F, Sergienko A V, et al. Decoherence-free subspaces in quantum key distribution. Phys Rev Lett, 2003, 91: 087901

    Article  ADS  Google Scholar 

  19. Boileau J C, Gottesman D, Laflamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel. Phys Rev Lett, 2004, 92: 017901

    Article  ADS  Google Scholar 

  20. Ge H, Liu W Y. A new quantum secure direct communication protocol using decoherence-free subspace. Chin Phys Lett, 2007, 24: 2727–2729

    Article  ADS  Google Scholar 

  21. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  ADS  Google Scholar 

  22. Li X H, Zhao B K, Sheng Y B, et al. Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int J Quantum Inf, 2009, 7(8): 1479–1489

    Article  MATH  Google Scholar 

  23. Yang C W, Tsai C W, Hwang T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci China-Phys Mech Astron, 2011, 54: 496–501

    Article  ADS  Google Scholar 

  24. Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China-Phys Mech Astron, 2011, 54: 942–947

    Article  ADS  Google Scholar 

  25. Huang W, Wen Q Y, Jia H Y, et al. Fault tolerant quantum secure direct communication ith quantum encryption against collective noise. Chin Phys B, 2012, 21: 100308

    Article  ADS  Google Scholar 

  26. Ren B C, Wei H R, Hua M, et al. Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur Phys J D, 2013, 67(2): 1–8

    Article  MathSciNet  Google Scholar 

  27. Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett, 2005, 22: 1049–1052

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Zhang, S., Li, J. et al. Robust EPR-pairs-based quantum secure communication with authentication resisting collective noise. Sci. China Phys. Mech. Astron. 57, 1907–1912 (2014). https://doi.org/10.1007/s11433-014-5434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5434-0

Keywords

Navigation