Skip to main content
Log in

Universal quantum computation with qudits

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching algorithm. Most of previous algorithms are based on the qubit systems. Herein a proposal for a universal circuit is given based on the qudit system, which is larger and can store more information. In order to prove its universality for quantum applications, an explicit set of one-qudit and two-qudit gates is provided for the universal qudit computation. The one-qudit gates are general rotation for each two-dimensional subspace while the two-qudit gates are their controlled extensions. In comparison to previous quantum qudit logical gates, each primitive qudit gate is only dependent on two free parameters and may be easily implemented. In experimental implementation, multilevel ions with the linear ion trap model are used to build the qudit systems and use the coupling of neighbored levels for qudit gates. The controlled qudit gates may be realized with the interactions of internal and external coordinates of the ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M A, Chuang I S. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000. 50–100

    MATH  Google Scholar 

  2. DiVincenzo D P. Two-bit gates are universal for quantum computation. Phys Rev A, 1995, 51: 1015–1022

    Article  ADS  Google Scholar 

  3. Sleator T, Weinfurter H. Realizable universal quantum logic gates. Phys Rev Lett, 1995, 74: 4087–4090

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Barenco A. A universal two-bit gate for quantum computation. Proc R Soc London Ser A, 1995, 449: 679–683

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation. Phys Rev A, 1995, 52: 3457–3467

    Article  ADS  Google Scholar 

  6. Toffoli T. Reversible computing. Lect Notes Comput Sci, 1980, 84: 632–644

    Article  MathSciNet  Google Scholar 

  7. Muthukrishnan A, Stroud Jr C R. Multivalued logic gates for quantum computation. Phys Rev A, 2000, 62: 052309

    Article  ADS  MathSciNet  Google Scholar 

  8. Brennen G K, O’Leary D P, Bullock S S. Criteria for exact qudit universality. Phys Rev A, 2005, 71: 052318

    Article  ADS  MathSciNet  Google Scholar 

  9. Brylinski J L, Brylinski R. Universal quantum gates. In: Brylinski R K, Chen G, eds. Mathematics of Quantum Computation. Boca: Chapman & Hall/CRC Press, 2002. 99–113

    Google Scholar 

  10. Daboul J, Wang X, Sanders B C. Quantum gates on hybrid qudits. J Phys A-Math Gen, 2003, 36: 2525

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Brennen G K, Bullock S S, O’Leary D P. Efficient circuits for exactuniversal computationwith qudits. Quantum Inf Comput, 2006, 6: 436–454

    MATH  MathSciNet  Google Scholar 

  12. Zhou D L, Zeng B, Xu Z, et al. Quantum computation based on d-level cluster state. Phys Rev A, 2003, 68: 062303

    Article  ADS  Google Scholar 

  13. Bullock S S, O’Leary D P, Brennen G K. Asymptotically optimal quantum circuits for d-level systems. Phys Rev Lett, 2005, 94: 230502

    Article  ADS  Google Scholar 

  14. Li W D, Gu Y J, Liu K, et al. Efficient universal quantum computation with auxiliary Hilbert space. Phys Rev A, 2013, 88: 034303

    Article  ADS  Google Scholar 

  15. Mischuck B, Molmer K. Qudit quantum computation in the Jaynes-Cummings model. Phys Rev A, 2013, 87: 022341

    Article  ADS  Google Scholar 

  16. Gottesman D. Fault-tolerant computation with higher dimensional systems. Chaos Soliton Fractal, 1999, 10: 1749–1758

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Fujiwara M, Takeoka M, Mizuno J, et al. Exceeding the classical capacity limit in a quantum optical channel. Phys Rev Lett, 2003, 90: 167906

    Article  ADS  Google Scholar 

  18. Cortese J. Holevo-Schumacher-Westmoreland channel capacity for a class of qudit unital channels. Phys Rev A, 2004, 69: 022302

    Article  ADS  Google Scholar 

  19. Collins D, Gisin N, Linden N, et al. Bell inequalities for arbitrarily high-dimensional systems. Phys Rev Lett, 2002, 88: 040404

    Article  ADS  MathSciNet  Google Scholar 

  20. Ralph T C, Resch K, Gilchrist A. Efficient Toffoli gates using qudits. Phys Rev A, 2007, 75: 022313

    Article  ADS  Google Scholar 

  21. Lanyon B P, Weinhold T J, Langford N K, et al. Manipulating biphotonic qutrits. Phys Rev Lett, 2008, 100: 060504

    Article  ADS  Google Scholar 

  22. Lanyon B P, Barbieri M, Almeida MP, et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat Phys, 2009, 5: 134–140

    Article  Google Scholar 

  23. Nikolopoulos G M, Ranade K S, Alber G. Error tolerance of two-basis quantum-key-distribution protocols using qudits and two-way classical communication. Phys Rev A, 2006, 73: 032325

    Article  ADS  Google Scholar 

  24. Molina-Terriza G, Vaziri A, Rehacek J, et al. Triggered qutrits for quantum communication protocols. Phys Rev Lett, 2004, 92: 167903

    Article  ADS  Google Scholar 

  25. Groblacher S, Jennewein T, Vaziri A, et al. Experimental quantum cryptography with qutrits. New J Phys, 2006, 8: 75

    Article  Google Scholar 

  26. Bruß D, Macchiavello C. Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys Rev Lett, 2002, 88: 127901

    Article  ADS  Google Scholar 

  27. Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems. Phys Rev Lett, 2002, 88: 127902

    Article  ADS  Google Scholar 

  28. Karimipour K, Bahraminasab A, Bagherinezhad S. Quantum key distribution for d-level systems with generalized Bell states. Phys Rev A, 2002, 65: 052331

    Article  ADS  Google Scholar 

  29. Ann K, Jaeger G. Entanglement sudden death in qubit-qutrit systems. Phys Lett A, 2008, 372: 579–583

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Song W, Chen L, Zhu S L. Sudden death of distillability in qutrit-qutrit systems. Phys Rev A, 2009, 80: 012331

    Article  ADS  Google Scholar 

  31. Walborn S P, Lemelle D S, Almeida M P, et al. Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys Rev Lett, 2006, 96: 090501

    Article  ADS  Google Scholar 

  32. Chen L B, Lu H. Nonlocal unambiguous discrimination among N nonorthogonal qudit states lying in a higher-dimensional Hilbert space. Sci China-Phys Mech Astron, 2012, 55: 55–59

    Article  ADS  Google Scholar 

  33. Zhang Z Y, Liu Y M, Zhang W, et al. Criterion and flexibility of operation difficulty for perfect teleportation of arbitrary n-qutrit state with (n: n)-qutrit pure state. Sci China-Phys Mech Astron, 2011, 54: 1476–1480

    Article  ADS  Google Scholar 

  34. Cao Y, Peng S G, Zheng C, et al. Quantum Fourier transform and phase estimation in qudit system. Commun Theor Phys, 2011, 55: 790–794

    Article  ADS  MATH  Google Scholar 

  35. Ivanov P A, Kyoseva E S, Vitanov N V. Engineering of arbitrary U(N) transformations by quantum Householder reflections. Phys Rev A, 2006, 74: 022323

    Article  ADS  Google Scholar 

  36. O’ullivan-Hale M N, Khan I A, Boyd R W, et al. Pixel entanglement: Experimental realization of optically entangled d = 3 and d = 6 qudits. Phys Rev Lett, 2005, 94: 220501

    Article  Google Scholar 

  37. Rousseaux B, Guerin S, Vitanov N V. Arbitrary qudit gates by adiabatic passage. Phys Rev A, 2013, 87: 032328

    Article  ADS  Google Scholar 

  38. Neeley M, Ansmann M, Bialczak R C, et al. Emulation of a quantum spin with a superconducting phase qudit. Science, 2009, 7: 722–725

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingXing Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Wang, X. Universal quantum computation with qudits. Sci. China Phys. Mech. Astron. 57, 1712–1717 (2014). https://doi.org/10.1007/s11433-014-5551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5551-9

Keywords

Navigation