Skip to main content
Log in

Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) is aimed at removing all detector side channel attacks, while its security relies on the assumption that the encoding systems including sources are fully characterized by the two legitimate parties. By exploiting the mismatched-basis statistics in the security analysis, MDI-QKD even with uncharacterized qubits can generate secret keys. In this paper, considering the finite size effect, we study the decoy-state MDI-QKD protocol with mismatched-basis events statistics by performing full parameter optimization, and the simulation result shows that this scheme is very practical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing. Bangalore, 1984. 175–179

    Google Scholar 

  2. Zhang C M, Li M, Huang J Z, et al. Fast implementation of length-adaptive privacy amplification in quantum key distribution. Chin Phys B, 2014, 23: 090310

    Article  ADS  Google Scholar 

  3. Zhang C M, Song X T, Treeviriyanupab P, et al. Delayed error verification in quantum key distribution. Chin Sci Bull, 2014, 59: 2825–2828

    Article  Google Scholar 

  4. Li M, Treeviriyanupab P, Zhang C M, et al. Efficient error estimation in quantum key distribution. Chin Phys B, 2015, 24: 010302

    Article  ADS  Google Scholar 

  5. Zhao L Y, Li H W, Yin Z Q, et al. Security of biased BB84 quantum key distribution with finite resource. Chin Phys B, 2014, 23: 100304

    Article  ADS  Google Scholar 

  6. Zhang S, Zou X, Li C, et al. A universal coherent source for quantum key distribution. Chin Sci Bull, 2009, 54: 1863–1871

    Article  MATH  Google Scholar 

  7. Wang C Z, Guo H, Ren J G, et al. Experimental validation of dynamic polarization compensation in ground-satellite quantum key distribution. Sci China-Phys Mech Astron, 2014, 57: 1233–1237

    Article  ADS  Google Scholar 

  8. Makarov V, Anisimov A, Skaar J. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys Rev A, 2006, 74: 022313

    Article  ADS  Google Scholar 

  9. Qi B, Fung C H F, Lo H K, et al. Time-shift attack in practical quantum cryptosystems. Quantum Inf Comput, 2007, 7: 073–082

    MathSciNet  Google Scholar 

  10. Fung C H F, Qi B, Tamaki K, et al. Phase-remapping attack in practical quantum-key-distribution systems. Phys Rev A, 2007, 75: 032314

    Article  ADS  Google Scholar 

  11. Lydersen L, Wiechers C, Wittmann C, et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photonics, 2010, 4: 686–689

    Article  ADS  Google Scholar 

  12. Li H W, Wang S, Huang J Z, et al. Attacking a practical quantumkey-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys Rev A, 2011, 84: 062308

    Article  ADS  Google Scholar 

  13. Jain N, Wittmann C, Lydersen L, et al. Device calibration impacts security of quantum key distribution. Phys Rev Lett, 2011, 107: 110501

    Article  ADS  Google Scholar 

  14. Acín A, Brunner N, Gisin N, et al. Device-independent security of quantum cryptography against collective attacks. Phys Rev Lett, 2007, 98: 230501

    Article  ADS  Google Scholar 

  15. Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hidden-variable theories. Phys Rev Lett, 1969, 23: 880

    Article  ADS  Google Scholar 

  16. Braunstein S L, Pirandola S. Side-channel-free quantum key distribution. Phys Rev Lett, 2012, 108: 130502

    Article  ADS  Google Scholar 

  17. Lo H-K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett, 2012, 108: 130503

    Article  ADS  Google Scholar 

  18. Rubenok A, Slater J A, Chan P, et al. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys Rev Lett, 2013, 111: 130501

    Article  ADS  Google Scholar 

  19. Silva T F, Vitoreti D, Xavier G B, et al. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys Rev A, 2013, 88: 052303

    Article  ADS  Google Scholar 

  20. Liu Y, Chen T Y, Wang L J, et al. Experimental measurement-deviceindependent quantum key distribution. Phys Rev Lett, 2013, 111: 130502

    Article  ADS  Google Scholar 

  21. Tang Z, Liao Z, Xu F, et al. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys Rev Lett, 2014, 112: 190503

    Article  ADS  Google Scholar 

  22. Tang Y L, Yin H L, Chen S J, et al. Measurement-device-independent quantum key distribution over 200 km. Phys Rev Lett, 2014, 113: 190501

    Article  ADS  Google Scholar 

  23. Yin Z Q, Fung C H F, Ma X, et al. Measurement-device-independent quantum key distribution with uncharacterized qubit sources. Phys Rev A, 2013, 88: 062322

    Article  ADS  Google Scholar 

  24. Li H W, Yin Z Q, Chen W, et al. Quantum key distribution based on quantum dimension and independent devices. Phys Rev A, 2014, 89: 032302

    Article  ADS  Google Scholar 

  25. Zhang C M, Li M, Li H W, et al. Decoy-state measurement-deviceindependent quantum key distribution based on the Clauser-Horne-Shimony-Holt inequality. Phys Rev A, 2014, 90: 034302

    Article  ADS  Google Scholar 

  26. Tamaki K, Curty M, Kato G, et al. Loss-tolerant quantum cryptography with imperfect sources. Phys Rev A, 2014, 90: 052314

    Article  ADS  Google Scholar 

  27. Yin Z Q, Fung C H F, Ma X, et al. Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources. Phys Rev A, 2014, 90: 052319

    Article  ADS  Google Scholar 

  28. Huttner B, Imoto N, Gisin N, et al. Quantum cryptography with coherent states. Phys Rev A, 1995, 51: 1863–1869

    Article  ADS  Google Scholar 

  29. Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography. Phys Rev Lett, 2000, 85: 1330–1333

    Article  ADS  Google Scholar 

  30. Lo H K, Ma X, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504

    Article  ADS  Google Scholar 

  31. Ma X, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution. Phys Rev A, 2005, 72: 012326

    Article  ADS  Google Scholar 

  32. Ma X, Fung C H F, Razavi M. Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys Rev A, 2011, 86: 052305

    Article  ADS  Google Scholar 

  33. Li M, Zhang C M, Yin Z Q, et al. Measurement-device-independent quantum key distribution with modified coherent state. Opt Lett, 2014, 39: 880–883

    Article  ADS  Google Scholar 

  34. Curty M, Xu F, Cui W, et al. Finite-key analysis for measurementdevice-independent quantum key distribution. Nat Commun, 2014, 5: 3732

    Article  ADS  Google Scholar 

  35. Ma X, Fung C H F, Boileau J C, et al. Universally composable and customizable post-processing for practical quantum key distribution. Comput & Secur, 2011, 30: 172–177

    Article  Google Scholar 

  36. Xu F, Xu H, Lo H K. Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys Rev A, 2014, 89: 052333

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhenQiang Yin or ZhengFu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, M., Yin, Z. et al. Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics. Sci. China Phys. Mech. Astron. 58, 590301 (2015). https://doi.org/10.1007/s11433-015-5687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5687-2

Keywords

Navigation