Skip to main content
Log in

High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

  • Article
  • Optics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, and G. Brassard, in Quantum cryptography: Public key distribution and coin tossing: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, 1984), pp. 175–179.

    Google Scholar 

  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  3. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009).

    Article  ADS  Google Scholar 

  4. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Nature 421, 238 (2003).

    Article  ADS  Google Scholar 

  5. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, Nat. Photonics 7, 378 (2013).

    Article  ADS  Google Scholar 

  6. U. M. Maurer, IEEE Trans. Inform. Theor. 39, 733 (1993).

    Article  MATH  Google Scholar 

  7. C. H. Bennett, G. Brassard, and J. M. Robert, SIAM J. Comput. 17, 210 (1988).

    Article  MathSciNet  Google Scholar 

  8. C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, IEEE Trans. Inform. Theor. 41, 1915 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Van Assche, J. Cardinal, and N. J. Cerf, IEEE Trans. Inform. Theor. 50, 394 (2004).

    Article  MATH  Google Scholar 

  10. M. Bloch, A. Thangaraj, S. W. Mclaughlin, and J. M. Merolla, in LDPC-based Gaussian key reconciliation: Proceedings of IEEE Information Theory Workshop (Punta del Este, 2006), pp. 116–120.

    Google Scholar 

  11. J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, Phys. Rev. A 76, 042305 (2007).

    Article  ADS  Google Scholar 

  12. X. Y. Hu, E. Eleftheriou, and D. M. Arnold, in Progressive edgegrowth Tanner graphs: Proceedings of IEEE Global Telecommunications Conference (San Antonio, 2001), pp. 995–1001.

    Google Scholar 

  13. X. Y. Hu, E. Eleftheriou, and D. M. Arnold, in Irregular progressive edge-growth (PEG) Tanner graphs: Proceedings of IEEE International Symposium on Information Theory (Zurich Research Laboratory, Ruschlikon, 2002), pp. 480.

    Google Scholar 

  14. X. Y. Hu, E. Eleftheriou, and D. M. Arnold, IEEE Trans. Inform. Theor. 51, 386 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  15. M. P. C. Fossorier, IEEE Trans. Inform. Theor. 50, 1788 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Okamura, in Designing LDPC codes using cyclic shifts: Proceedings of IEEE International Symposium on Information Theory (Yokohama, 2003), pp. 151.

    Google Scholar 

  17. F. Grosshans, and P. Grangier, arXiv: quant-ph/0204127v1.

  18. J. Max, IRE Trans. Inform. Theor. 6, 7 (1960).

    Article  MathSciNet  Google Scholar 

  19. A. D. Liveris, Z. X. Xiong, and C. N. Georghiades, IEEE Commun. Lett. 6, 440 (2002).

    Article  Google Scholar 

  20. Z. Y. Fan, W. B. Zhang, X. C. Liu, and H. H. Cheng, in An improved algorithm for constructing QC-LDPC codes based on the PEG algorithm: Proceedings of IEEE 4th International Conference on Communications and Networking (Xi’an, 2009), pp. 1–4.

    Google Scholar 

  21. J. Lu, and J. M. F. Moura, IEEE Trans. Magn. 42, 208 (2006).

    Article  ADS  Google Scholar 

  22. T. J. Richardson, and R. L. Urbanke, IEEE Trans. Inform. Theor. 47, 599 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  23. T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, IEEE Trans. Inform. Theor. 47, 619 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Y. Chung, T. J. Richardson, and R. L. Urbanke, IEEE Trans. Inform. Theor. 47, 657 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Storn, and K. Price, J. Global Optim. 11, 341 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, Phys. Rev. A 77, 042325 (2008).

    Article  ADS  Google Scholar 

  27. P. Jouguet, S. Kunz-Jacques, and A. Leverrier, Phys. Rev. A 84, 062317 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongMin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Wang, X., Yang, S. et al. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution. Sci. China Phys. Mech. Astron. 59, 614201 (2016). https://doi.org/10.1007/s11433-015-5702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5702-7

Keywords

Navigation