Skip to main content
Log in

QKD-based quantum private query without a failure probability

  • Article
  • Quantum Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we present a quantum-key-distribution (QKD)-based quantum private query (QPQ) protocol utilizing single-photon signal of multiple optical pulses. It maintains the advantages of the QKD-based QPQ, i.e., easy to implement and loss tolerant. In addition, different from the situations in the previous QKD-based QPQ protocols, in our protocol, the number of the items an honest user will obtain is always one and the failure probability is always zero. This characteristic not only improves the stability (in the sense that, ignoring the noise and the attack, the protocol would always succeed), but also benefits the privacy of the database (since the database will no more reveal additional secrets to the honest users). Furthermore, for the user’s privacy, the proposed protocol is cheat sensitive, and for security of the database, we obtain an upper bound for the leaked information of the database in theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing. New York: IEEE, 1984. 175–179

    Google Scholar 

  2. Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050–2056

    Article  ADS  Google Scholar 

  3. Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85: 441–444

    Article  ADS  Google Scholar 

  4. Ekert A K. Quantum cryptography based on Bell theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Goldenberg L, Vaidman L. Quantum cryptography based on orthogonal states. Phys Rev Lett, 1995, 75: 1239–1243

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Liu B, Gao F, Qin S J, et al. Choice of measurement as the secret. Phys Rev A, 2014, 89: 042318

    Article  ADS  Google Scholar 

  8. Zheng C, Long G F. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci China-Phys Mech Astron, 2014, 57: 1238–1243

    Article  ADS  Google Scholar 

  9. Zou X F, Qiu D W. Three-step semiquantum secure direct communication protocol. Sci China-Phys Mech Astron, 2014, 57: 1696–1702

    Article  ADS  Google Scholar 

  10. Yin X R, Ma W P, Shen D S, et al. Three-party quantum key agreement with Bell states. Acta Phys Sin, 2013, 62: 170304

    Google Scholar 

  11. Zhang C M, Song X T, Treeviriyanupab P, et al. Delayed error verification in quantum key distribution. Chin Sci Bull, 2014, 59: 2825–2828

    Article  Google Scholar 

  12. Chang Y, Xu C X, Zhang S B, et al. Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin Sci Bull, 2014, 59: 2541–2546

    Article  Google Scholar 

  13. Xiao F Y, Chen H W. Construction of minimal trellises for quantum stabilizer codes. Sci China Inf Sci, 2013, 56: 012306

    MathSciNet  Google Scholar 

  14. Xiao F Y, Chen H W, Xing M J, Liu Z H. Construction of punctured and extended quantum codes over GF(2). Sci China Inf Sci, 2013, 56: 032113

    MathSciNet  Google Scholar 

  15. Hu B Q, Huang X D, Zhou R G, et al. A theoretical framework for quantum image representation and data loading scheme. Sci China Inf Sci, 2014, 57: 032108

    Google Scholar 

  16. Chen Y W, Lin Q. Optical quantum router with cross-phase modulation. Sci China Inf Sci, 2014, 57: 122304

    Google Scholar 

  17. Jin W, Zheng L M, Wang F Q, et al. The influence of stochastic dispersion on quantum key distribution system. Sci China Inf Sci, 2013, 56: 092304

    Article  Google Scholar 

  18. Wang J, Cui K, Luo C L, et al. Design of a high-repetition rate photon source in a quantum key distribution system. Sci China Inf Sci, 2013, 56: 092305

    Google Scholar 

  19. Liu W Q, Peng J Y, Wang C, et al. Hybrid quantum private communication with continuous-variable and discrete-variable signals. Sci China-Phys Mech Astron, 2015, 58: 020301

    Google Scholar 

  20. Wang C Z, Guo H, Ren J G et al. Experimental validation of dynamic polarization compensation in ground-satellite quantum key distribution. Sci China-Phys Mech Astron, 2014, 57: 1233–1237

    Article  ADS  Google Scholar 

  21. Lo H K, Chau H F. Is quantum bit commitment really possible? Phys Rev Lett, 1997, 78: 3410–3413

    Article  ADS  Google Scholar 

  22. Mayers D. Unconditionally secure quantum bit commitment is impossible. Phys Rev Lett, 1997, 78: 3414–3417

    Article  ADS  Google Scholar 

  23. Gao F, Fang W, Wen Q Y. Minimum best success probability by classical strategies for quantum pseudo-telepathy. Sci China-Phys Mech Astron, 2014, 57: 1244–1249

    Article  ADS  Google Scholar 

  24. Huang W, Wen Q Y, Liu B, et al. Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci China-Phys Mech Astron, 2013, 56: 1670–1678

    Article  ADS  Google Scholar 

  25. Shi J J, Shi R H, Guo Y, et al. Batch proxy quantum blind signature scheme. Sci China Inf Sci, 2013, 56: 052115

    MathSciNet  Google Scholar 

  26. Gertner Y, Ishai Y, Kushilevitz E, et al. Protecting data privacy in private information retrieval schemes. J Comput Syst Sci, 2000, 60: 592–629

    Article  MATH  MathSciNet  Google Scholar 

  27. Lo H K. Insecurity of quantum secure computations. Phys Rev A, 1997, 56: 1154–1162

    Article  ADS  Google Scholar 

  28. Giovannetti V, Lloyd S, Maccone L. Quantum private queries. Phys Rev Lett, 2008, 100: 230502

    Article  MathSciNet  ADS  Google Scholar 

  29. Giovannetti V, Lloyd S, Maccone L. Quantum private queries: security analysis. IEEE T Inform Theory, 2010, 56: 3465–3477

    Article  MathSciNet  Google Scholar 

  30. Martini F D, Giovannetti V, Lloyd S, et al. Experimental quantum private queries with linear optics. Phys Rev A, 2009, 80: 010302

    Article  Google Scholar 

  31. Olejnik L. Secure quantum private information retrieval using phaseencoded queries. Phys Rev A, 2011, 84: 022313

    Article  ADS  Google Scholar 

  32. Jakobi M, Simon C, Gisin N, et al. Practical private database queries based on a quantum-key-distribution protocol. Phys Rev A, 2011 83: 022301

    Article  ADS  Google Scholar 

  33. Gao F, Liu B, Huang W, et al. Postprocessing of the oblivious key in quantum private query. IEEE J Sel Top Quant, 2015, 21, 6600111

    Google Scholar 

  34. Gao F, Liu B, Wen Q Y, et al. Flexible quantum private queries based on quantum key distribution. Opt Express, 2012, 20: 17411–17420

    Article  ADS  Google Scholar 

  35. Zhang J L, Guo F Z, Gao F, et al. Private database queries based on counterfactual quantum key distribution. Phys Rev A, 2013, 88: 022334

    Article  ADS  Google Scholar 

  36. Wei C Y, Gao F, Wen Q Y, et al. Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantumkey-distribution protocol. Sci Rep, 2014, 4: 7537

    Article  ADS  Google Scholar 

  37. Yang Y G, Sun S J, Xu P, et al. Flexible protocol for quantum private query based on B92 protocol. Quantum Inf Process, 2014, 13: 805–813

    Article  MathSciNet  Google Scholar 

  38. Yang Y G, Sun S J, Tian J, et al. Secure quantum private query with real-time security check. OPTIK, 2014, 125: 5538–5541

    Article  ADS  Google Scholar 

  39. Yang Y G, Zhang M O, Yang R. Private database queries using one quantum state. Quantum Inf Process, 2015, 14: 1017–1024

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Sun S J, Yang Y G, Zhang M O. Relativistic quantum private database queries. Quantum Inf Process, 2015, 14: 1443–1450

    Article  ADS  Google Scholar 

  41. Rao M V P, Jakobi M. Towards communication-efficient quantum oblivious key distribution. Phys Rev A, 2013, 87: 012331

    Article  ADS  Google Scholar 

  42. Shen D S, Zhu X C, Ma W P, et al. Improvement on private database queries based on the quantum key distribution. J Optoelectron ADV M, 2012, 14: 504–510

    Google Scholar 

  43. Chan P, Lucio-Martinez I, Mo X, et al. Performing private database queries in a real-world environment using a quantum protocol. Sci Rep, 2014, 4: 5233

    ADS  Google Scholar 

  44. Sasaki T, Yamamoto Y, Koashi M. Practical quantum key distribution protocol without monitoring signal disturbance. Nature, 2014, 509: 475–479

    Article  ADS  Google Scholar 

  45. Heilmann R, Graefe M, Nolte S, et al. A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci Bull, 2015, 60: 96–100

    Article  Google Scholar 

  46. Xu J S, Li C F. Quantum integrated circuit: Classical characterization. Sci Bull, 2015, 60: 141–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Gao, F., Huang, W. et al. QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015). https://doi.org/10.1007/s11433-015-5714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5714-3

Keywords

Navigation