Skip to main content
Log in

Photonic quantum network transmission assisted by the weak cross-Kerr nonlinearity

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Classical network coding permits all internal nodes to encode or decode the incoming messages over proper fields in order to complete a network multicast. Similar quantum encoding scheme cannot be easily followed because of various quantum no-go theorems. In this paper, to avoid these theorems in quantum multiple-source networks, we present a photonic strategy by exploring quantum transferring approaches assisted by the weak cross-Kerr nonlinearity. The internal node may nearly deterministically fuse all incoming photons into a single photon with multiple modes. The fused single photon may be transmitted using two- photonic hyperentanglement as a quantum resource. The quantum splitting as the inverse operation of the quantum fusion allows forwarding quantum states under the quantum no-cloning theorem. Furthermore, quantum addressing schemes are presented to complete the quantum transmissions on multiple-source networks going beyond the classical network broadcasts or quantum n-pair transmissions in terms of their reduced forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Gross, and J. Yellen, Graph Theory and Its Applications (CRC Press, Boca Raton, 2006).

    MATH  Google Scholar 

  2. S. Floyd, and K. Fall, IEEE/ACM Trans. Network. 7, 458 (1999).

    Article  Google Scholar 

  3. R. Ahlswede, R. N. Cai, S. Y. R. Li, and R. W. Yeung, IEEE Trans. Inform. Theor. 46, 1204 (2000).

    Article  Google Scholar 

  4. S. Y. R. Li, R. W. Yeung, and N. Cai, IEEE Trans. Inform. Theor. 49, 371 (2003).

    Article  Google Scholar 

  5. S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. G. M. Tolhuizen, IEEE Trans. Inform. Theor. 51, 1973 (2005).

    Article  Google Scholar 

  6. T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, IEEE Trans. Inform. Theor. 52, 4413 (2006).

    Article  Google Scholar 

  7. R. W. Yeung, S. Y. R. Li, N. Cai, and Z. Zhang, FNT Commun. Inf. Theor. 2, 241 (2005).

    Article  Google Scholar 

  8. C. Fragouli, and E. Soljanin, FNT Network. 2, 1 (2006).

    Article  Google Scholar 

  9. C. Y. Leow, Z. Ding, K. K. Leung, and D. L. Goeckel, IEEE Trans. Wireless Commun. 10, 670 (2011).

    Article  Google Scholar 

  10. Z. Li, B. Li, and L. C. Lau, IEEE Trans. Inform. Theor. 55, 1016 (2009).

    Article  Google Scholar 

  11. S. Maheshwar, Z. Li, and B. Li, IEEE Trans. Inform. Theor. 58, 570 (2012).

    Article  Google Scholar 

  12. M. Hayashi, Phys. Rev. A 76, 040301 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Y. Ma, X. B. Chen, M. X. Luo, X. X. Niu, and Y. X. Yang, Opt. Commun. 283, 497 (2010).

    Article  ADS  Google Scholar 

  14. D. Leung, J. Oppenheim, and A. Winter, IEEE Trans. Inform. Theor. 56, 3478 (2010).

    Article  Google Scholar 

  15. H. Kobayashi, F. Le Gall, H. Nishimura, and M. Roeler, in General Scheme for Perfect Quantum Network Coding with Free Classical Communication: Automata, Languages and Programming, edited by S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas, and W. Thomas (Springer, Berlin Heidelberg, 2009), pp. 51–58.

  16. H. Kobayashi, F. Le Gall, H. Nishimura, and M. Rotteler, in Constructing Quantum Network Coding Schemes from Classical Nonlinear Protocols: Proceedings 2011 IEEE International Symposium on Information Theory (ISIT2011) St. Petersburg, Russia, 31 July-5 August, 2011 (IEEE, Saint-Petersburg, 2011).

    Book  Google Scholar 

  17. W. K. Wootters, and W. H. Zurek, Nature 299, 802 (1982).

    Article  ADS  Google Scholar 

  18. M. X. Luo, H. R. Li, H. Lai, and X. Wang, Quantum Inf. Process. 16, 297 (2017).

    Article  ADS  Google Scholar 

  19. S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, Nature 484, 195 (2012).

    Article  ADS  Google Scholar 

  20. T. Y. Chen, J. Wang, H. Liang, W. Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W. Q. Cai, L. Ju, L. K. Chen, L. J. Wang, Y. Gao, K. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, Opt. Express 18, 27217 (2010).

    Article  ADS  Google Scholar 

  21. G. D. Paparo, and M. A. Martin-Delgado, Sci. Rep. 2, 444 (2012).

    Article  ADS  Google Scholar 

  22. J. Zhang, Y. Liu, K. Özdemir, R. B. Wu, F. Gao, X. B. Wang, L. Yang, and F. Nori, Sci. Rep. 3, 2211 (2013).

    Article  Google Scholar 

  23. H. J. Kimble, Nature 453, 1023 (2008).

    Article  ADS  Google Scholar 

  24. A. Chiuri, C. Greganti, M. Paternostro, G. Vallone, and P. Mataloni, Phys. Rev. Lett. 109, 173604 (2012).

    Article  ADS  Google Scholar 

  25. K. Nemoto, and W. J. Munro, Phys. Rev. Lett. 93, 250502 (2004).

    Article  ADS  Google Scholar 

  26. K. J. Zhang, L. Zhang, T. T. Song, and Y. H. Yang, Sci. China-Phys. Mech. Astron. 59, 660302 (2016).

    Article  Google Scholar 

  27. W. Qin, C. Wang, and G. L. Long, Phys. Rev. A 87, 012339 (2013).

    Article  ADS  Google Scholar 

  28. T. Li, and Z. Q. Yin, Sci. Bull. 61, 163 (2016).

    Article  Google Scholar 

  29. Q. Ai, Sci. Bull. 61,110(2016).

    Article  Google Scholar 

  30. W. Qin, C. Wang, Y. Cao, and G. L. Long, Phys. Rev. A 89, 062314 (2014).

    Article  ADS  Google Scholar 

  31. W. Qin, J. L. Li, and G. L. Long, Chin. Phys. B 24, 040305 (2015).

    Article  ADS  Google Scholar 

  32. W. Qin, and G. Long, Entropy 18, 179 (2016).

    Article  ADS  Google Scholar 

  33. B. Chen, and Y. Li, Sci. China-Phys. Mech. Astron. 59, 640302 (2016).

    Article  Google Scholar 

  34. Q. Lin, and J. Li, Phys. Rev. A 79, 022301 (2009).

    Article  ADS  Google Scholar 

  35. B. He, Y. Ren, and J. A. Bergou, Phys. Rev. A 79, 052323 (2009).

    Article  ADS  Google Scholar 

  36. B. He, Y. H. Ren, and J. A. Bergou, J. Phys. B-At. Mol. Opt. Phys. 43, 025502 (2010).

    Article  ADS  Google Scholar 

  37. Q. Lin, and B. He, Phys. Rev. A 80, 042310 (2009).

    Article  ADS  Google Scholar 

  38. Q. Lin, B. He, J. A. Bergou, and Y. Ren, Phys. Rev. A 80, 042311 (2009).

    Article  ADS  Google Scholar 

  39. B. He, Q. Lin, and C. Simon, Phys. Rev. A 83, 053826 (2011).

    Article  ADS  Google Scholar 

  40. Y. B. Sheng, and F. G. Deng, Phys. Rev. A 81, 032307 (2010).

    Article  ADS  Google Scholar 

  41. Y. B. Sheng, and L. Zhou, Sci. Rep. 5, 7815 (2015).

    Article  Google Scholar 

  42. Q. Lin, and B. He, Sci. Rep. 5, 12792 (2015).

    Article  ADS  Google Scholar 

  43. Q. Lin, and B. He, Phys. Rev. A 82, 022331 (2010).

    Article  ADS  Google Scholar 

  44. X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, Phys. Rev. A 85, 052326 (2012).

    Article  ADS  Google Scholar 

  45. M. X. Luo, H. R. Li, and H. Lai, Sci. Rep. 6, 29939 (2016).

    Article  ADS  Google Scholar 

  46. V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photon. 7, 138 (2013).

    Article  ADS  Google Scholar 

  47. A. Feizpour, M. Hallaji, G. Dmochowski, and A. M. Steinberg, Nat. Phys. 11, 905 (2015).

    Article  Google Scholar 

  48. X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Nature 518, 516 (2015).

    Article  ADS  Google Scholar 

  49. T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, Nat. Commun. 6, 7185 (2015).

    Article  Google Scholar 

  50. M. X. Luo, H. R. Li, H. Lai, and X. Wang, Phys. Rev. A 93, 012332 (2016).

    Article  ADS  Google Scholar 

  51. C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, Nat. Photon 7, 521 (2013).

    Article  ADS  Google Scholar 

  52. E. Passaro, C. Vitelli, N. Spagnolo, F. Sciarrino, E. Santamato, and L. Marrucci, Phys. Rev. A 88, 062321 (2013).

    Article  ADS  Google Scholar 

  53. M. X. Luo, S. Y. Ma, X. B. Chen, and X. Wang, Phys. Rev. A 91, 042326 (2015).

    Article  ADS  Google Scholar 

  54. R. Dougherty, C. Freiling, and K. Zeger, IEEE Trans. Inform. Theor. 51, 2745 (2005).

    Article  Google Scholar 

  55. R. Dougherty, C. Freiling, and K. Zeger, IEEE Trans. Inform. Theor. 51, 2745 (2005).

    Article  Google Scholar 

  56. S. Huang, and A. Ramamoorthy, IEEE/ACM Trans. Network. 22, 285 (2014).

    Article  Google Scholar 

  57. D. S. Simon, and A. V. Sergienko, New J. Phys. 16, 063052 (2014).

    Article  ADS  Google Scholar 

  58. S. P. Walborn, Nat. Phys. 4, 268 (2008).

    Article  Google Scholar 

  59. A. El Gamal, and Y. H. Kim, Network Information Theory (Cambridge University Press, Cambridge, 2011).

    Book  MATH  Google Scholar 

  60. J. Gea-Banacloche, Phys. Rev. A 81, 043823 (2010).

    Article  ADS  Google Scholar 

  61. J. H. Shapiro, Phys. Rev. A 73, 062305 (2006).

    Article  ADS  Google Scholar 

  62. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

    Article  ADS  Google Scholar 

  63. P. Kok, H. Lee, and J. P. Dowling, Phys. Rev. A 66, 063814 (2002).

    Article  ADS  Google Scholar 

  64. C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, Phys. Rev. A 81, 062338 (2010).

    Article  ADS  Google Scholar 

  65. E. Pomarico, B. Sanguinetti, R. Thew, and H. Zbinden, Opt. Express 18, 10750 (2010).

    Article  ADS  Google Scholar 

  66. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, Opt. Express 19, 870 (2011).

    Article  ADS  Google Scholar 

  67. H. Myoren, S. Takeda, M. Naruse, T. Taino, J. Chen, and P. Wu, IEEE Trans. Appl. Supercond. 25, 1 (2015).

    Article  Google Scholar 

  68. Q. Weng, Z. An, B. Zhang, P. Chen, X. Chen, Z. Zhu, and W. Lu, Sci. Rep. 5, 9389 (2015).

    Article  ADS  Google Scholar 

  69. S. Ding, G. Maslennikov, R. Hablützel, and D. Matsukevich, Phys. Rev. Lett. 119, 193602 (2017).

    Article  ADS  Google Scholar 

  70. S. T. Le, V. Aref, and H. Buelow, Nat. Photon. 11, 570 (2017).

    Article  Google Scholar 

  71. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Phys. Rev. Lett. 73, 58 (1994).

    Article  ADS  Google Scholar 

  72. I. Dhand, and S. K. Goyal, Phys. Rev. A 92, 043813 (2015).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Wang or Ming-Xing Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Luo, MX., Xu, G. et al. Photonic quantum network transmission assisted by the weak cross-Kerr nonlinearity. Sci. China Phys. Mech. Astron. 61, 060312 (2018). https://doi.org/10.1007/s11433-017-9143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9143-y

Keywords

Navigation