Skip to main content
Log in

Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Fluid-structure interaction (FSI) is a class of mechanics-related problems with mutual dependence between the fluid and structure parts and it is observable nearly everywhere, in natural phenomena to many engineering systems. The primary challenges in developing numerical models with conventional grid-based methods are the inherent nonlinearity and time-dependent nature of FSI, together with possible large deformations and moving interfaces. Smoothed particle hydrodynamics (SPH) method is a truly Lagrangian and meshfree particle method that conveniently treats large deformations and naturally captures rapidly moving interfaces and free surfaces. Since its invention, the SPH method has been widely applied to study different problems in engineering and sciences, including FSI problems. This article presents a review of the recent developments in SPH based modeling techniques for solving FSI-related problems. The basic concepts of SPH along with conventional and higher order particle approximation schemes are first introduced. Then, the implementation of FSI in a pure SPH framework and the hybrid approaches of SPH with other grid-based or particle-based methods are discussed. The SPH models of FSI problems with rigid, elastic and flexible structures, with granular materials, and with extremely intensive loadings are demonstrated. Some discussions on several key techniques in SPH including the balance of accuracy, stability and efficiency, the treatment of material interface, the coupling of SPH with other methods, and the particle regularization and adaptive particle resolution are provided as concluding marks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Liu, J. R. Shao, and H. Q. Li, Int. J. Numer. Meth. Fluids 74, 684 (2014).

    Article  Google Scholar 

  2. F. R. Ming, A. M. Zhang, H. Cheng, and P. N. Sun, Ocean Eng. 165, 336 (2016).

    Article  Google Scholar 

  3. J. R. Wright, and J. E. Cooper, Introduction to Aircraft Aeroelasticity and Loads (Wiley, Weinheim, 2007).

    Book  Google Scholar 

  4. W. Shen, and Y. P. Zhao, J. Appl. Mech. 85, 031003 (2018).

    Article  ADS  Google Scholar 

  5. M. B. Liu, and G. R. Liu, Arch. Comput. Methods Eng. 17, 25 (2010).

    Article  MathSciNet  Google Scholar 

  6. H.-J. Bungartz, Fluid-structure Interaction: Modelling, Simulation, Optimization (Springer-Verlag, Heidelberg, 2006).

    Book  Google Scholar 

  7. J. F. Sigrist, Fluid-Structure Interaction: An Introduction to Finite Element Coupling (Wiley, Weinheim, 2015).

    Book  MATH  Google Scholar 

  8. Y. C. Fung, An Introduction to the Theory of Aeroelasticity (John Wiley & Sons, Ltd., Hoboken, 1994).

    Google Scholar 

  9. M. B. Liu, and G. R. Liu, Particle Methods for Multi-Scale and Multi-Physics (World Scientific, Singapore, 2016).

    Book  MATH  Google Scholar 

  10. M. Matsumoto, H. Shirato, T. Yagi, R. Shijo, A. Eguchi, and H. Tamaki, J. Wind Eng. Ind. Aerod. 91, 1547 (2003).

    Article  Google Scholar 

  11. J. R. Shao, H. Q. Li, G. R. Liu, and M. B. Liu, Comput. Struct. 100–101, 18 (2012).

    Article  Google Scholar 

  12. M. Luo, C. G. Koh, and W. Bai, Ocean Eng. 120, 52 (2016).

    Article  Google Scholar 

  13. H. J.-P. Morand, and R. Ohayon, Fluid-Structure Interaction: Applied Numerical Methods (Wiley, Weinheim, 1995).

    MATH  Google Scholar 

  14. E. H. Dowell, and K. C. Hall, Annu. Rev. Fluid Mech. 33, 445 (2001).

    Article  ADS  Google Scholar 

  15. W. Shyy, H. S. Udaykumar, M. M. Rao, and R. W. Smith, Computational Fluid Dynamics with Moving Boundaries (Dover Publications, New York, 2007).

    Google Scholar 

  16. G. Hou, J. Wang, and A. Layton, Commun. Commut. Phys. 12, 337 (2012).

    Article  Google Scholar 

  17. G. R. Liu, and M. B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method (World Scientific, Singapore, 2003).

    Book  MATH  Google Scholar 

  18. P. Brandimarte, Finite-Difference Methods for Partial Differential Equations (Wiley, Weinheim, 1960).

    Google Scholar 

  19. T. Liszka, and J. Orkisz, Comput. Struct. 11, 83 (1980).

    Article  Google Scholar 

  20. T. N. Narasimhan, and P. A. Witherspoon, Water Resour. Res. 12, 57 (1976).

    Article  ADS  Google Scholar 

  21. J. Kim, D. Kim, and H. Choi, J. Comput. Phys. 171, 132 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  22. I. Demirdzic, and M. Peric, Int. J. Numer. Meth. Fluids 10, 771 (1990).

    Article  Google Scholar 

  23. P. Jenny, S. H. Lee, and H. A. Tchelepi, J. Comput. Phys. 187, 47 (2003).

    Article  ADS  Google Scholar 

  24. G. Strang, G. J. Fix, and D. S. Griffin, J. Appl. Mech. 41, 62 (1974).

    Article  ADS  Google Scholar 

  25. J. R. Cho, and H. W. Lee, Comput. Methods Appl. Mech. Eng. 193, 2581 (2004).

    Article  ADS  Google Scholar 

  26. S. Mitra, P. P. Upadhyay, and K. P. Sinhamahapatra, Int. J. Numer. Meth. Fluids 56, 1625 (2008).

    Article  Google Scholar 

  27. K. Walayat, Z. Zhang, K. Usman, J. Chang, and M. Liu, Phys. Fluids 30, 103301 (2018).

    Article  ADS  Google Scholar 

  28. D. Wan, and S. Turek, Int. J. Numer. Meth. Fluids 51, 531 (2006).

    Article  Google Scholar 

  29. D. Wan, and S. Turek, J. Comput. Appl. Math. 203, 561 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  30. O. C. Zienkiewicz, and R. L. Taylor, The Finite Element Method (McGraw-Hill, New York, 2000).

    MATH  Google Scholar 

  31. D. Liu, and P. Lin, J. Comput. Phys. 227, 3921 (2008).

    Article  ADS  Google Scholar 

  32. A. E. P. Veldman, J. Gerrits, R. Luppes, J. A. Helder, and J. P. B. Vreeburg, J. Comput. Phys. 224, 82 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  33. C. W. Hirt, and B. D. Nichols, J. Comput. Phys. 39, 201 (1981).

    Article  ADS  Google Scholar 

  34. M. Sussman, P. Smereka, and S. Osher, J. Comput. Phys. 114, 146 (1994).

    Article  ADS  Google Scholar 

  35. D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, J. Comput. Phys. 155, 410 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  36. C. Farhat, and M. Lesoinne, Comput. Methods Appl. Mech. Eng. 182, 499 (2000).

    Article  ADS  Google Scholar 

  37. M. Souli, A. Ouahsine, and L. Lewin, Comput. Methods Appl. Mech. Eng. 190, 659 (2000).

    Article  ADS  Google Scholar 

  38. K. J. Bathe, and H. Zhang, Comput. Struct. 87, 604 (2009).

    Article  Google Scholar 

  39. O. M. Faltinsen, and A. N. Timokha, J. Fluid Mech. 665, 457 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  40. M. A. Noorian, R. D. Firouz-Abadi, and H. Haddadpour, Int. J. Numer. Meth. Engng. 89, 1652 (2012).

    Article  Google Scholar 

  41. G. Fourey, C. Hermange, D. Le Touzé, and G. Oger, Comput. Phys. Commun. 217, 66 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  42. A. W. Vreman, J. Fluid Mech. 796, 40 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  43. A. W. Vreman, A Staggered Overset Grid Method for Resolved Simulation of Incompressible Flow Around Moving Spheres (Academic Press Professional, Inc., New York, 2017).

    Book  Google Scholar 

  44. W. K. Liu, Y. Chen, S. Jun, J. S. Chen, T. Belytschko, C. Pan, R. A. Uras, and C. T. Chang, Arch. Comput. Methods Eng. 3, 3 (1996).

    Article  Google Scholar 

  45. S. F. Li, and W. K. Liu, Appl. Mech. Rev. 55, 1 (2002).

    Article  ADS  Google Scholar 

  46. G. R. Liu, and Y. T. Gu, An Introduction to Meshfree Methods and Their Programming (Springer, Heidelberg, 2005).

    Google Scholar 

  47. R. A. Gingold, and J. J. Monaghan, Mon. Not. R. Astron. Soc. 181, 375 (1977).

    Article  ADS  Google Scholar 

  48. L. B. Lucy, Astron. J. 82, 1013 (1977).

    Article  ADS  Google Scholar 

  49. J. J. Monaghan, Annu. Rev. Fluid Mech. 44, 323 (2012).

    Article  ADS  Google Scholar 

  50. S. Koshizuka, and Y. Oka, Nucl. Sci. Eng. 123, 421 (1996).

    Article  ADS  Google Scholar 

  51. S. Koshizuka, Comput. Fluid Dyn. J. 4, 29 (1995).

    Google Scholar 

  52. S. Shao, C. Ji, D. I. Graham, D. E. Reeve, P. W. James, and A. J. Chadwick, Coast. Eng. 53, 723 (2006).

    Article  Google Scholar 

  53. Z. Chen, Z. Zong, M. B. Liu, and H. T. Li, Int. J. Numer. Meth. Fluids 73, 813 (2013).

    Article  Google Scholar 

  54. A. J. Chorin, Math. Comp. 22, 745 (1968).

    Article  MathSciNet  Google Scholar 

  55. J. J. Monaghan, Annu. Rev. Astron. Astrophys. 30, 543 (1992).

    Article  ADS  Google Scholar 

  56. A. Zhang, P. Sun, F. Ming, and A. Colagrossi, J. Hydrodyn. 29, 187 (2017).

    Article  ADS  Google Scholar 

  57. D. Violeau, and B. D. Rogers, J. Hydraul. Res. 254, 1 (2016).

    Article  Google Scholar 

  58. H. Gotoh, and A. Khayyer, Coast. Eng. J. 60, 79 (2018).

    Article  Google Scholar 

  59. M. S. Shadloo, G. Oger, and D. Le Touzé, Comput. Fluids 136, 11 (2016).

    Article  MathSciNet  Google Scholar 

  60. Z. B. Wang, R. Chen, H. Wang, Q. Liao, X. Zhu, and S. Z. Li, Appl. Math. Model. 40, 9625 (2016).

    Article  MathSciNet  Google Scholar 

  61. J. J. Monaghan, J. Comput. Phys. 110, 399 (1994).

    Article  ADS  Google Scholar 

  62. M. B. Liu, G. R. Liu, K. Y. Lam, and Z. Zong, Comput. Mech. 30, 106 (2003).

    Article  Google Scholar 

  63. L. D. Libersky, A. G. Petschek, T. C. Carney, J. R. Hipp, and F. A. Allahdadi, J. Comput. Phys. 109, 67 (1993).

    Article  ADS  Google Scholar 

  64. X. Y. Hu, and N. A. Adams, J. Comput. Phys. 227, 264 (2007).

    Article  ADS  Google Scholar 

  65. A. Colagrossi, and M. Landrini, J. Comput. Phys. 191, 448 (2003).

    Article  ADS  Google Scholar 

  66. R. A. Dalrymple, and B. D. Rogers, Coast. Eng. 53, 141 (2006).

    Article  Google Scholar 

  67. S. Shao, and E. Y. M. Lo, Adv. Water Res. 26, 787 (2003).

    Article  Google Scholar 

  68. Z. L. Zhang, D. L. Feng, T. Ma, and M. B. Liu, Eng. Anal. Bound. Elem. 98, 110 (2019).

    Article  MathSciNet  Google Scholar 

  69. A. Zhang, P. Sun, and F. Ming, Comput. Methods Appl. Mech. Eng. 294, 189 (2015).

    Article  ADS  Google Scholar 

  70. J. K. Chen, and J. E. Beraun, Comput. Methods Appl. Mech. Eng. 190, 225 (2000).

    Article  ADS  Google Scholar 

  71. M. B. Liu, and G. R. Liu, Appl. Numer. Math. 56, 19 (2006).

    Article  MathSciNet  Google Scholar 

  72. M. B. Liu, W. P. Xie, and G. R. Liu, Appl. Math. Model. 29, 1252 (2005).

    Article  Google Scholar 

  73. R. C. Batra, and G. M. Zhang, J. Comput. Phys. 201, 172 (2004).

    Article  ADS  Google Scholar 

  74. G. M. Zhang, and R. C. Batra, Comput. Mech. 34, 137 (2004).

    Google Scholar 

  75. J. Fang, R. G. Owens, L. Tacher, and A. Parriaux, J. Non-Newton. Fluid Mech. 139, 68 (2006).

    Article  Google Scholar 

  76. J. Fang, and A. Parriaux, J. Comput. Phys. 227, 8894 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  77. D. Asprone, F. Auricchio, and A. Reali, Int. J. Numer. Meth. Fluids 65, 1376 (2011).

    Article  Google Scholar 

  78. D. Asprone, F. Auricchio, A. Montanino, and A. Reali, Int. J. Numer. Meth. Eng. 99, 1 (2014).

    Article  Google Scholar 

  79. Z. L. Zhang, and M. B. Liu, Appl. Math. Model. 60, 606 (2018).

    Article  MathSciNet  Google Scholar 

  80. Z. L. Zhang, K. Walayat, J. Z. Chang, and M. B. Liu, Int. J. Numer. Meth. Eng. 116, 530 (2018).

    Article  Google Scholar 

  81. C. Huang, J. M. Lei, M. B. Liu, and X. Y. Peng, Int. J. Numer. Meth. Fluids 78, 691 (2015).

    Article  Google Scholar 

  82. C. Huang, J. M. Lei, M. B. Liu, and X. Y. Peng, Int. J. Numer. Meth. Fluids 81, 377 (2016).

    Article  Google Scholar 

  83. J. Ren, T. Jiang, W. Lu, and G. Li, Comput. Phys. Commun. 205, 87 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  84. G. Oger, D. Le Touzé, D. Guibert, M. de Leffe, J. Biddiscombe, J. Soumagne, and J. G. Piccinali, Comput. Phys. Commun. 200, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  85. A. Ferrari, M. Dumbser, E. F. Toro, and A. Armanini, Comput. Fluids 38, 1203 (2009).

    Article  MathSciNet  Google Scholar 

  86. A. Zhang, X. Cao, F. Ming, and Z. F. Zhang, Appl. Ocean Res. 42, 24 (2013).

    Article  Google Scholar 

  87. H. Wen, B. Ren, P. Dong, and Y. Wang, Appl. Ocean Res. 59, 366 (2016).

    Article  Google Scholar 

  88. J. L. Cercos-Pita, Comput. Phys. Commun. 192, 295 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  89. Q. Xiong, B. Li, and J. Xu, Comput. Phys. Commun. 184, 1701 (2013).

    Article  ADS  Google Scholar 

  90. D. Winkler, M. Meister, M. Rezavand, and W. Rauch, Comput. Phys. Commun. 213, 165 (2017).

    Article  ADS  Google Scholar 

  91. S. M. Longshaw, and B. D. Rogers, Adv. Eng. Softw. 83, 31 (2015).

    Article  Google Scholar 

  92. S. Børve, M. Omang, and J. Trulsen, J. Comput. Phys. 208, 345 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  93. G. Oger, M. Doring, B. Alessandrini, and P. Ferrant, J. Comput. Phys. 213, 803 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  94. R. Vacondio, B. D. Rogers, P. K. Stansby, and P. Mignosa, Adv. Water Res. 58, 10 (2013).

    Article  Google Scholar 

  95. R. Vacondio, B. D. Rogers, P. K. Stansby, P. Mignosa, and J. Feldman, Comput. Methods Appl. Mech. Eng. 256, 132 (2013).

    Article  ADS  Google Scholar 

  96. R. Vacondio, B. D. Rogers, and P. K. Stansby, Int. J. Numer. Meth. Fluids 69, 1377 (2012).

    Article  Google Scholar 

  97. D. A. Barcarolo, D. Le Touzé, G. Oger, and F. de Vuyst, J. Comput. Phys. 273, 640 (2014).

    Article  ADS  Google Scholar 

  98. P. N. Sun, A. Colagrossi, S. Marrone, and A. M. Zhang, Comput. Methods Appl. Mech. Eng. 315, 25 (2017).

    Article  ADS  Google Scholar 

  99. L. Chiron, G. Oger, M. de Leffe, and D. Le Touzé, J. Comput. Phys. 354, 552 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  100. J. Feldman, and J. Bonet, Int. J. Numer. Meth. Eng. 72, 295 (2007).

    Article  Google Scholar 

  101. Y. R. López, D. Roose, and C. Recarey Morfa, Comput. Mech. 51, 731 (2013).

    Article  MathSciNet  Google Scholar 

  102. S. Koshizuka, A. Nobe, and Y. Oka, Int. J. Numer. Meth. Fluids 26, 751 (1998).

    Article  Google Scholar 

  103. E. S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, and P. Stansby, J. Comput. Phys. 227, 8417 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  104. A. Khayyer, H. Gotoh, and S. D. Shao, Coast. Eng. 55, 236 (2008).

    Article  Google Scholar 

  105. H. Gotoh, A. Khayyer, H. Ikari, T. Arikawa, and K. Shimosako, Appl. Ocean Res. 46, 104 (2008).

    Article  Google Scholar 

  106. A. Skillen, S. Lind, P. K. Stansby, and B. D. Rogers, Comput. Methods Appl. Mech. Eng. 265, 163 (2013).

    Article  ADS  Google Scholar 

  107. M. Antuono, A. Colagrossi, S. Marrone, and D. Molteni, Comput. Phys. Commun. 181, 532 (2010).

    Article  ADS  Google Scholar 

  108. M. Antuono, A. Colagrossi, and S. Marrone, Comput. Phys. Commun. 183, 2570 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  109. J. P. Vila, Math. Model. Methods Appl. Sci. 9, 161 (1999).

    Article  Google Scholar 

  110. S. I. Inutsuka, J. Comput. Phys. 179, 238 (2002).

    Article  ADS  Google Scholar 

  111. J. J. Monaghan, J. Comput. Phys. 136, 298 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  112. P. Omidvar, P. K. Stansby, and B. D. Rogers, Int. J. Numer. Meth. Fluids 72, 427 (2013).

    Article  Google Scholar 

  113. P. K. Koukouvinis, J. S. Anagnostopoulos, and D. E. Papantonis, Int. J. Numer. Meth. Fluids 71, 1152 (2013).

    Article  Google Scholar 

  114. L. Han, and X. Hu, J. Hydrodyn. 30, 62 (2018).

    Article  ADS  Google Scholar 

  115. A. Rafiee, and K. P. Thiagarajan, Comput. Methods Appl. Mech. Eng. 198, 2785 (2009).

    Article  ADS  Google Scholar 

  116. M. Liu, J. Shao, and H. Li, J. Hydrodyn. 25, 673 (2013).

    Article  ADS  Google Scholar 

  117. F. R. Ming, A. M. Zhang, and X. Y. Cao, Acta Mech. Sin. 29, 241 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  118. F. R. Ming, A. M. Zhang, and S. P. Wang, Int. J. Appl. Mech. 07, 1550032 (2015).

    Article  Google Scholar 

  119. V. Mehra, and S. Chaturvedi, J. Comput. Phys. 212, 318 (2006).

    Article  ADS  Google Scholar 

  120. A. M. Zhang, W. S. Yang, and X. L. Yao, Appl. Ocean Res. 34, 10 (2012).

    Article  ADS  Google Scholar 

  121. M. B. Liu, Z. L. Zhang, and D. L. Feng, Comput. Mech. 60, 513 (2017).

    Article  MathSciNet  Google Scholar 

  122. P. W. Randles, and L. D. Libersky, Comput. Methods Appl. Mech. Eng. 139, 375 (1996).

    Article  ADS  Google Scholar 

  123. M. B. Liu, G. R. Liu, Z. Zong, and K. Y. Lam, Comput. Fluids 32, 305 (2003).

    Article  Google Scholar 

  124. D. L. Feng, M. B. Liu, H. Q. Li, and G. R. Liu, Comput. Fluids 86, 77 (2013).

    Article  Google Scholar 

  125. M. B. Liu, G. R. Liu, K. Y. Lam, and Z. Zong, Shock Waves 12, 509 (2003).

    Article  ADS  Google Scholar 

  126. M. B. Liu, G. R. Liu, and K. Y. Lam, Shock Waves 15, 21 (2006).

    Article  ADS  Google Scholar 

  127. Z. L. Zhang, and M. B. Liu, Eng. Anal. Bound. Elem. 83, 141 (2017).

    Article  MathSciNet  Google Scholar 

  128. Z. L. Zhang, D. L. Feng, and M. B. Liu, J. Manuf. Proc. 35, 169 (2018).

    Article  Google Scholar 

  129. Z. L. Zhang, T. Ma, M. B. Liu, and D. Feng, Int. J. Comput. Methods 16, 1846001 (2019).

    Article  MathSciNet  Google Scholar 

  130. A. Zhang, W. S. Yang, C. Huang, and F. Ming, Comput. Fluids 71, 169 (2013).

    Article  MathSciNet  Google Scholar 

  131. F. R. Ming, A. M. Zhang, Y. Z. Xue, and S. P. Wang, Ocean Eng. 117, 359 (2016).

    Article  Google Scholar 

  132. P. Wang, A. M. Zhang, F. Ming, P. Sun, and H. Cheng, J. Fluid Mech. 860, 81 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  133. S. Marrone, A. Di Mascio, and D. Le Touzé, J. Comput. Phys. 310, 161 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  134. L. Chiron, S. Marrone, A. Di Mascio, and D. Le Touzé, J. Comput. Phys. 364, 111 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  135. D. Hu, T. Long, Y. Xiao, X. Han, and Y. Gu, Comput. Methods Appl. Mech. Eng. 276, 266 (2014).

    Article  ADS  Google Scholar 

  136. T. Long, D. Hu, D. Wan, C. Zhuang, and G. Yang, J. Comput. Phys. 350, 166 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  137. Z. Li, J. Leduc, J. Nunez-Ramirez, A. Combescure, and J. C. Marongiu, Comput. Mech. 55, 697 (2015).

    Article  MathSciNet  Google Scholar 

  138. Q. Yang, V. Jones, and L. McCue, Ocean Eng. 55, 136 (2012).

    Article  Google Scholar 

  139. K. Wu, D. Yang, and N. Wright, Comput. Struct. 177, 141 (2016).

    Article  Google Scholar 

  140. L. C. Qiu, Ind. Eng. Chem. Res. 52, 11313 (2013).

    Article  Google Scholar 

  141. Y. Tang, Q. Jiang, and C. Zhou, Appl. Math. Model. 62, 436 (2018).

    Article  MathSciNet  Google Scholar 

  142. X. Yang, and M. Liu, Commun. Comput. Phys. 22, 1015 (2017).

    Article  MathSciNet  Google Scholar 

  143. X. Yang, M. Liu, and S. Peng, Phys. Rev. E 90, 063011 (2014).

    Article  ADS  Google Scholar 

  144. X. Yang, M. Liu, S. Peng, and C. Huang, Coast. Eng. 108, 56 (2016).

    Article  Google Scholar 

  145. J. J. Monaghan, and J. C. Lattanzio, Astron. Astrophys. 149, 135 (1985).

    ADS  Google Scholar 

  146. A. Colagrossi, M. Antuono, and D. Le Touzé, Phys. Rev. E 79, 056701 (2009).

    Article  ADS  Google Scholar 

  147. Z. L. Zhang, T. Ma, D. L. Feng, and M. B. Liu, Int. J. Comput. Methods 15, 1844004 (2018).

    Google Scholar 

  148. J. D. Anderson, Computational Fluid Dynamics: The Basics With Applications (McGraw Hill, New York, 2002).

    Google Scholar 

  149. H. U. Mair, Shock Vib. 6, 81 (1999).

    Article  Google Scholar 

  150. R. Car, and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  ADS  Google Scholar 

  151. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  ADS  Google Scholar 

  152. S. Yamamoto, Y. Maruyama, and S. Hyodo, J. Chem. Phys. 116, 5842 (2002).

    Article  ADS  Google Scholar 

  153. R. D. Groot, and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).

    Article  ADS  Google Scholar 

  154. M. S. Shadloo, A. Zainali, M. Yildiz, and A. Suleman, Int. J. Numer. Meth. Eng. 89, 939 (2012).

    Article  Google Scholar 

  155. D. H. Zhang, Y. X. Shi, C. Huang, Y. L. Si, and W. Li, J. Mar. Sci. Technol. 24, 73 (2019).

    Article  Google Scholar 

  156. P. N. Sun, A. Colagrossi, S. Marrone, M. Antuono, and A. M. Zhang, Comput. Phys. Commun. 224, 63 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  157. F. Macia, M. Antuono, L. M. Gonzalez, and A. Colagrossi, Prog. Theor. Phys. 125, 1091 (2011).

    Article  ADS  Google Scholar 

  158. S. Adami, X. Y. Hu, and N. A. Adams, J. Comput. Phys. 231, 7057 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  159. J. J. Monaghan, and J. B. Kajtar, Comput. Phys. Commun. 180, 1811 (2009).

    Article  ADS  Google Scholar 

  160. B. D. Rogers, and R. A. Dalrymple, SPH Modeling of Tsunami Waves (World scientific, Singapore, 2008).

    Book  Google Scholar 

  161. S. Kulasegaram, J. Bonet, R. W. Lewis, and M. Profit, Comput. Mech. 33, 316 (2004).

    Article  Google Scholar 

  162. M. Ferrand, D. R. Laurence, B. D. Rogers, D. Violeau, and C. Kassiotis, Int. J. Numer. Meth. Fluids 71, 446 (2013).

    Article  Google Scholar 

  163. A. Amicarelli, G. Agate, and R. Guandalini, Int. J. Numer. Meth. Eng. 95, 419 (2013).

    Article  Google Scholar 

  164. A. Leroy, D. Violeau, M. Ferrand, and C. Kassiotis, J. Comput. Phys. 261, 106 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  165. Z. Chen, Z. Zong, M. B. Liu, L. Zou, H. T. Li, and C. Shu, J. Comput. Phys. 283, 169 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  166. S. Adami, X. Y. Hu, and N. A. Adams, J. Comput. Phys. 229, 5011 (2010).

    Article  ADS  Google Scholar 

  167. N. Grenier, M. Antuono, A. Colagrossi, D. Le Touzé, and B. Alessandrini, J. Comput. Phys. 228, 8380 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  168. T. Belytschko, Y. Krongauz, J. Dolbow, and C. Gerlach, Int. J. Numer. Meth. Eng. 43, 785 (2015).

    Article  Google Scholar 

  169. M. B. Liu, J. R. Shao, and J. Z. Chang, Sci. China Technol. Sci. 55, 244 (2012).

    Article  Google Scholar 

  170. Z. Li, J. Leduc, A. Combescure, and F. Leboeuf, Comput. Fluids 103, 6 (2014).

    Article  MathSciNet  Google Scholar 

  171. G. Fourey, G. Oger, D. Touzé, and B. Alessandrini, in IOP Conference Series: Materials Science and Engineering 10 (IOP Publishing, Bristol, 2010), p. 012041.

    Google Scholar 

  172. P. H. L. Groenenboom, and B. K. Cartwright, J. Hydraul. Res. 48, 61 (2010).

    Article  Google Scholar 

  173. T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures (John Wiley & Sons Inc., Hoboken, 2014).

    MATH  Google Scholar 

  174. S. W. Attaway, M. W. Heinstein, and J. W. Swegle, Nucl. Eng. Des. 150, 199 (1994).

    Article  Google Scholar 

  175. Z. Zhang, H. Qiang, and W. Gao, Eng. Struct. 33, 255 (2011).

    Article  Google Scholar 

  176. T. De Vuyst, R. Vignjevic, and J. C. Campbell, Int. J. Impact Eng. 31, 1054 (2005).

    Article  Google Scholar 

  177. E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, J. Comput. Phys. 161, 35 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  178. R. Mittal, and G. Iaccarino, Annu. Rev. Fluid Mech. 37, 239 (2005).

    Article  ADS  Google Scholar 

  179. M. Neuhauser, and J.-C. Marongiu, in Proceedings of 9th SPHERIC International Workshop (SPH European Research Interest Community, Paris, 2014).

    Google Scholar 

  180. E. Napoli, M. De Marchis, C. Gianguzzi, B. Milici, and A. Monteleone, Comput. Methods Appl. Mech. Eng. 310, 674 (2016).

    Article  ADS  Google Scholar 

  181. F. Chen, H. Qiang, and W. Gao, Comput. Chem. Eng. 77, 135 (2015).

    Article  Google Scholar 

  182. F. Chen, H. Qiang, H. Zhang, and W. Gao, Int. J. Numer. Meth. Eng. 109, 73 (2017).

    Article  Google Scholar 

  183. D. Zhou, and R. H. Wagoner, J. Mater. Proc. Tech. 50, 1 (1995).

    Article  Google Scholar 

  184. K.-I. Tsubota, S. Wada, and T. Yamaguchi, J. Mater. Proc. Technol. 1, 159 (2006).

    Google Scholar 

  185. S. M. Hosseini, and J. J. Feng, Chem. Eng. Sci. 64, 4488 (2009).

    Article  Google Scholar 

  186. P. W. Cleary, Miner. Eng. 73, 85 (2015).

    Article  Google Scholar 

  187. B. Ren, Z. Jin, R. Gao, Y. Wang, and Z. Xu, J. Waterw. Port Coast. Ocean Eng. 140, 04014022 (2014).

    Article  Google Scholar 

  188. M. Robinson, M. Ramaioli, and S. Luding, Int. J. Multiphase Flow 59, 121 (2014).

    Article  Google Scholar 

  189. A. M. Zhang, F. R. Ming, and S. P. Wang, Appl. Ocean Res. 43, 223 (2013).

    Article  Google Scholar 

  190. K. Gong, S. Shao, H. Liu, B. Wang, and S. K. Tan, J. Fluids Struct. 65, 155 (2016).

    Article  ADS  Google Scholar 

  191. X. Liu, H. Xu, S. Shao, and P. Lin, Comput. Fluids 71, 113 (2013).

    Article  MathSciNet  Google Scholar 

  192. L. Wang, F. Xu, Y. Yang, and J. Wang, Eng. Anal. Bound. Elem. 100, 140 (2019).

    Article  MathSciNet  Google Scholar 

  193. T. Ye, D. Pan, C. Huang, M. Liu, Phys. Fluids 31 (2019).

  194. J. Shao, S. Li, Z. Li, and M. Liu, Eng. Comput. 32, 1172 (2015).

    Article  Google Scholar 

  195. H. Akyildız, and U. N. Erdem, Ocean Eng. 33, 2135 (2006).

    Article  Google Scholar 

  196. O. M. Faltinsen, O. F. Rognebakke, I. A. Lukovsky, and A. N. Timokha, J. Fluid Mech. 407, 201 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  197. M. Greenhow, and S. Moyo, Philos. Trans. R. Soc. London. Ser. A-Math. Phys. Eng. Sci. 355, 551 (1997).

    Article  ADS  Google Scholar 

  198. P. Lin, Comput. Fluids 36, 549 (2007).

    Article  Google Scholar 

  199. P. A. Tyvand, and T. Miloh, J. Fluid Mech. 286, 67 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  200. G. Oger, L. Brosset, P. M. Guilcher, E. Jacquin, J. B. Deuff, and D. L. Touzé, Int. J. Offshore Polar Eng. 20, 181 (2010).

    Google Scholar 

  201. C. Antoci, M. Gallati, and S. Sibilla, Comput. Struct. 85, 879 (2007).

    Article  Google Scholar 

  202. S. C. Hwang, A. Khayyer, H. Gotoh, and J. C. Park, J. Fluids Struct. 50, 497 (2014).

    Article  ADS  Google Scholar 

  203. A. Khayyer, H. Gotoh, H. Falahaty, and Y. Shimizu, Comput. Phys. Commun. 232, 139 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  204. Y. M. Scolan, J. Sound Vib. 277, 163 (2004).

    Article  ADS  Google Scholar 

  205. J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou, Science 302, 1566 (2003).

    Article  ADS  Google Scholar 

  206. T. Y. Wu, Annu. Rev. Fluid Mech. 43, 25 (2011).

    Article  ADS  Google Scholar 

  207. S. Vogel, J. Exp. Bot. 40, 941 (1989).

    Article  Google Scholar 

  208. F. Gosselin, E. de Langre, and B. A. Machado-Almeida, J. Fluid Mech. 650, 319 (2010).

    Article  ADS  Google Scholar 

  209. S. Alben, M. Shelley, and J. Zhang, Nature 420, 479 (2002).

    Article  ADS  Google Scholar 

  210. S. Alben, M. Shelley, and J. Zhang, Phys. Fluids 16, 1694 (2004).

    Article  ADS  Google Scholar 

  211. W. Hu, Q. Tian, and H. Hu, Nonlin. Dyn. 75, 653 (2014).

    Article  Google Scholar 

  212. W. Hu, Q. Tian, and H. Y. Hu, Sci. China-Phys. Mech. Astron. 61, 044711 (2018).

    Article  ADS  Google Scholar 

  213. L. A. Miller, A. Santhanakrishnan, S. Jones, C. Hamlet, K. Mertens, and L. Zhu, J. Exp. Biol. 215, 2716 (2012).

    Article  Google Scholar 

  214. L. Zhu, J. Fluid Mech. 587, 217 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  215. R. Y. Yakoub, and A. A. Shabana, J. Mech. Des. 123, 614 (2001).

    Article  Google Scholar 

  216. R. Glowinski, T. W. Pan, T. I. Hesla, and D. D. Joseph, Int. J. Multiphase Flow 25, 755 (1999).

    Article  MathSciNet  Google Scholar 

  217. B. K. Mishra, and R. K. Rajamani, Appl. Math. Model. 16, 598 (1992).

    Article  Google Scholar 

  218. S. B. Pillapakkam, and P. Singh, J. Comput. Phys. 174, 552 (2001).

    Article  ADS  Google Scholar 

  219. G. J. Wagner, S. Ghosal, and W. K. Liu, Int. J. Numer. Meth. Engng. 56, 1261 (2003).

    Article  Google Scholar 

  220. N. Tofighi, M. Ozbulut, A. Rahmat, J. J. Feng, and M. Yildiz, J. Comput. Phys. 297, 207 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  221. M. R. Hashemi, R. Fatehi, and M. T. Manzari, Int. J. Non-Lin. Mech. 47, 626 (2012).

    Article  Google Scholar 

  222. X. Bian, and M. Ellero, Comput. Phys. Commun. 185, 53 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  223. S. Turek, D. Wan, and L. S. Rivkind, Lect. Notes Comput. Sci. Eng. 35, 37 (2003).

    Article  Google Scholar 

  224. R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Périaux, J. Comput. Phys. 169, 363 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  225. G. He, G. Jin, and Y. Yang, Annu. Rev. Fluid Mech. 49, 51 (2017).

    Article  ADS  Google Scholar 

  226. Z. L. Zhang, K. Walayat, C. Huang, J. Z. Chang, and M. B. Liu, Int. J. Heat Mass Transfer 128, 1245 (2019).

    Article  Google Scholar 

  227. J. W. Swegle, and S. W. Attaway, Comput. Mech. 17, 151 (1995).

    Article  Google Scholar 

  228. Y. Wang, H. G. Beom, M. Sun, and S. Lin, Int. J. Impact Eng. 38, 51 (2011).

    Article  Google Scholar 

  229. S. A. A. A. Mousavi, and S. T. S. Al-Hassani, Mater. Des. 29, 1 (2008).

    Article  Google Scholar 

  230. S. R. Reid, Int. J. Mech. Sci. 16, 399 (1974).

    Article  Google Scholar 

  231. G. R. Cowan, O. R. Bergmann, and A. H. Holtzman, Metall. Mater. Trans. B 2, 3145 (1971).

    Article  ADS  Google Scholar 

  232. M. Katayama, A. Takeba, S. Toda, and S. Kibe, Int. J. Impact Eng. 23, 443 (1999).

    Article  Google Scholar 

  233. M. N. Raftenberg, in Twelfth Army Symposium on Solid Mechanics Proceedings, Watertown, USA November 4–7, 1991, edited by S. C. Chou (1992).

  234. J. J. Monaghan, J. Comput. Phys. 159, 290 (2000).

    Article  ADS  Google Scholar 

  235. N. Tsuruta, A. Khayyer, and H. Gotoh, Comput. Fluids 82, 158 (2013).

    Article  MathSciNet  Google Scholar 

  236. R. Xu, P. Stansby, and D. Laurence, J. Comput. Phys. 228, 6703 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  237. S. J. Lind, R. Xu, P. K. Stansby, and B. D. Rogers, J. Comput. Phys. 231, 1499 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  238. P. Omidvar, P. K. Stansby, and B. D. Rogers, Wave Body Interaction in 2D Using Smoothed Particle Hydrodynamics (SPH) With Variable Particle Mass (John Wiley & Sons, Hoboken, 2012).

    Book  MATH  Google Scholar 

  239. S. Kitsionas, and A. P. Whitworth, Mon. Not. R. Astron. Soc. 330, 129 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moubin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhang, Z. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci. China Phys. Mech. Astron. 62, 984701 (2019). https://doi.org/10.1007/s11433-018-9357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9357-0

Navigation