Skip to main content
Log in

Efficient quantum arithmetic operation circuits for quantum image processing

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Efficient quantum circuits for arithmetic operations are vital for quantum algorithms. A fault-tolerant circuit is required for a robust quantum computing in the presence of noise. Quantum circuits based on Clifford+T gates are easily rendered fault-tolerant. Therefore, reducing the T-depth and T-Count without increasing the qubit number represents vital optimization goals for quantum circuits. In this study, we propose the fault-tolerant implementations for TR and Peres gates with optimized T-depth and T-Count. Next, we design fault-tolerant circuits for quantum arithmetic operations using the TR and Peres gates. Then, we implement cyclic and complete translations of quantum images using quantum arithmetic operations, and the scalar matrix multiplication. Comparative analysis and simulation results reveal that the proposed arithmetic and image operations are efficient. For instance, cyclic translations of a quantum image produce 50% T-depth reduction relative to the previous best-known cyclic translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Benioff, J. Stat. Phys. 22, 563 (1980).

    ADS  Google Scholar 

  2. D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985).

    ADS  Google Scholar 

  3. P. W. Shor, SIAM J. Comput. 26, 1484 (1997).

    MathSciNet  Google Scholar 

  4. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997), arXiv: quantph/9706033.

    ADS  Google Scholar 

  5. S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).

    Google Scholar 

  6. Z. X. Cui, W. Zhong, L. Zhou, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 62, 110311 (2019).

    ADS  Google Scholar 

  7. F. Gao, S. J. Qin, W. Huang, and Q. Y. Wen, Sci. China-Phys. Mech. Astron. 62, 070301 (2019).

    Google Scholar 

  8. Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Sci. China-Phys. Mech. Astron. 63, 230362 (2020), arXiv: 1805.07228.

    Google Scholar 

  9. R. He, J. G. Ma, and J. Wu, Europhys. Lett. 127, 50006 (2019).

    ADS  Google Scholar 

  10. Z. Gao, T. Li, and Z. Li, Europhys. Lett. 125, 40004 (2019).

    ADS  Google Scholar 

  11. L. Zhou, Y. B. Sheng, and G. L. Long, Sci. Bull. 65, 12 (2020).

    Google Scholar 

  12. J. W. Wu, Z. S. Lin, L. G. Yin, and G. L. Long, Quantum Eng. 1, e26 (2019).

    Google Scholar 

  13. Y. B. Sheng, and L. Zhou, Phys. Rev. A 98, 052343 (2018).

    ADS  Google Scholar 

  14. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000), p.129.

    MATH  Google Scholar 

  15. L. Hao, and G. L. Long, Sci. China-Phys. Mech. Astron. 54, 936 (2011).

    ADS  Google Scholar 

  16. H. S. Li, P. Fan, H. Xia, S. Song, and X. He, Sci. Rep. 8, 13884 (2018).

    ADS  Google Scholar 

  17. H. S. Li, P. Fan, H. Xia, and S. Song, Inf. Sci. 504, 113 (2019).

    ADS  Google Scholar 

  18. H. S. Li, P. Fan, H. Xia, S. Song, and X. He, Quantum Inf. Process. 17, 333 (2018).

    ADS  Google Scholar 

  19. P. Q. Le, A. M. Iliyasu, F. Dong, and K. Hirota, Int. J. Appl. Marth. 40, 113 (2010).

    Google Scholar 

  20. P. Fan, R. G. Zhou, N. Jing, and H. S. Li, Inf. Sci. 340–341, 191 (2016).

    Google Scholar 

  21. Y. Zhang, K. Lu, and Y. H. Gao, Sci. China Inf. Sci. 58, 1 (2015).

    ADS  Google Scholar 

  22. Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).

    Google Scholar 

  23. W. N. N. Hung, X. Y. Song, G. W. Yang, J. Yang, and M. Perkowski, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25, 1652 (2006).

    Google Scholar 

  24. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995), arXiv: quant-ph/9503016.

    ADS  Google Scholar 

  25. Y. Liu, G. L. Long, and Y. Sun, Int. J. Quantum Inform. 06, 447 (2008).

    Google Scholar 

  26. V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54, 147 (1996), arXiv: quant-ph/9511018.

    ADS  MathSciNet  Google Scholar 

  27. T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, arXiv: quantph/0406142.

  28. Y. Takahashi, and N. Kunihiro, Quantum Inform. Comput. 8, 636 (2008).

    Google Scholar 

  29. Y. Takahashi, S. Tani, and N. Kunihiro, arXiv: 0910.2530.

  30. S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, arXiv: quant-ph/0410184.

  31. M. K. Thomsen, R. Glück, and H. B. Axelsen, J. Phys. A-Math. Theor. 43, 382002 (2013).

    Google Scholar 

  32. A. Peres, Phys. Rev. A 32, 3266 (1985).

    ADS  MathSciNet  Google Scholar 

  33. H. Thapliyal, and N. Ranganathan, IEEE computer society Annual symposium on VLSI (IEEE, Tampa, 2009), pp. 229–234.

    Google Scholar 

  34. H. Thapliyal, and N. Ranganathan, J. Emerg. Technol. Comput. Syst. 9, 17 (2013).

    Google Scholar 

  35. H. V. Jayashree, H. Thapliyal, H. R. Arabnia, and V. K. Agrawal, J. Supercomput. 72, 1477 (2016).

    Google Scholar 

  36. H. Xia, H. Li, H. Zhang, Y. Liang, and J. Xin, Int. J. Theor. Phys. 57, 3727 (2018).

    Google Scholar 

  37. X. Zhou, D. W. Leung, and I. L. Chuang, Phys. Rev. A 62, 052316 (2000), arXiv: quant-ph/0002039.

    ADS  Google Scholar 

  38. B. Giles, and P. Selinger, Phys. Rev. A 87, 032332 (2013), arXiv: 1212.0506.

    ADS  Google Scholar 

  39. V. Kliuchnikov, D. Maslov, and M. Mosca, Phys. Rev. Lett. 110, 190502 (2013), arXiv: 1212.0822.

    ADS  Google Scholar 

  40. M. Amy, D. Maslov, M. Mosca, and M. Roetteler, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32, 818 (2013).

    Google Scholar 

  41. M. Amy, D. Maslov, and M. Mosca, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33, 1476 (2014).

    Google Scholar 

  42. D. Gosset, V. Kliuchnikov, M. Mosca, and V. Russo, arXiv: 1308.4134.

  43. C. Gidney, arXiv: 1212.5069v1.

  44. C. Jones, arXiv: 1709.06648v3.

  45. H. Thapliyal, T. S. S. Varun, and E. Munoz-Coreas, arXiv: 1609.01241.

  46. H. Thapliyal, E. Munoz-Coreas, T. S. S. Varun, and T. Humble, IEEE Trans. Emerg. Top. Comput. 52, 1 (2020).

    Google Scholar 

  47. E. Munoz-Coreas, and H. Thapliyal, IEEE Trans. Comput. 68, 729 (2019).

    MathSciNet  Google Scholar 

  48. G. Beach, C. Lomont, and C. Cohen, in 32nd Applied Imagery Pattern Recognition Workshop (IEEE, Washington, 2003), pp. 39–44.

    Google Scholar 

  49. S. E. Venegas-Andraca, and S. Bose, in Proc. SPIE Conference Quantum Information and Computation (SPIE, Orlando, 2003), pp. 137–147.

    Google Scholar 

  50. P. Q. Le, F. Dong, and K. Hirota, Quantum Inf. Process. 10, 63 (2011).

    MathSciNet  Google Scholar 

  51. H. S. Li, Q. Zhu, R. G. Zhou, M. C. Li, I. Song, and H. Ian, Inf. Sci. 273, 212 (2014).

    Google Scholar 

  52. Y. Zhang, K. Lu, Y. Gao, and M. Wang, Quantum Inf. Process. 12, 2833 (2013).

    ADS  MathSciNet  Google Scholar 

  53. F. Yan, A. M. Iliyasu, Y. Guo, and H. Yang, Theor. Comput. Sci. 752, 71 (2018).

    Google Scholar 

  54. H. S. Li, P. Fan, H. Y. Xia, H. Peng, and S. Song, IEEE Trans. Circuits Syst. I: Reg. Papers 66, 341 (2018).

    Google Scholar 

  55. J. Wang, N. Jiang, and L. Wang, Quantum Inf. Process. 14, 1589 (2015).

    ADS  MathSciNet  Google Scholar 

  56. R. G. Zhou, C. Tan, and H. Ian, Int. J. Theor. Phys. 56, 1382 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Sheng Li or Gui-Lu Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HS., Fan, P., Xia, H. et al. Efficient quantum arithmetic operation circuits for quantum image processing. Sci. China Phys. Mech. Astron. 63, 280311 (2020). https://doi.org/10.1007/s11433-020-1582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1582-8

Keywords

Navigation