Skip to main content
Log in

A deep neural network surrogate modeling benchmark for temperature field prediction of heat source layout

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The thermal issue is of great importance during the layout design of heat source components in systems engineering, especially for high functional-density products. Thermal analysis requires complex simulation, which leads to an unaffordable computational burden to layout optimization as it iteratively evaluates different schemes. Surrogate modeling is an effective method for alleviating computation complexity. However, the temperature field prediction (TFP) with complex heat source layout (HSL) input is an ultra-high dimensional nonlinear regression problem, which brings great difficulty to traditional regression models. The deep neural network (DNN) regression method is a feasible way for its good approximation performance. However, it faces great challenges in data preparation for sample diversity and uniformity in the layout space with physical constraints and proper DNN model selection and training for good generality, which necessitates the efforts of layout designers and DNN experts. To advance this cross-domain research, this paper proposes a DNN-based HSL-TFP surrogate modeling task benchmark. With consideration for engineering applicability, sample generation, dataset evaluation, DNN model, and surrogate performance metrics are thoroughly investigated. Experiments are conducted with ten representative state-of-the-art DNN models. A detailed discussion on baseline results is provided, and future prospects are analyzed for DNN-based HSL-TFP tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. J. Forrester, and A. J. Keane, Prog. Aerospace Sci. 45, 50 (2009).

    Article  ADS  Google Scholar 

  2. M. Emam, S. Ookawara, and M. Ahmed, Renew. Energy 141, 322 (2019).

    Article  Google Scholar 

  3. X. Chen, W. Yao, Y. Zhao, X. Chen, and X. Zheng, Struct. Multidiscip. Optim. 58, 2635 (2018).

    Article  Google Scholar 

  4. A. Géczy, Int. J. Heat Mass Transfer 109, 167 (2017).

    Article  Google Scholar 

  5. X. T. Cheng, X. H. Xu, and X. G. Liang, Sci. China Ser. E-Tech. Sci. 52, 2937 (2009).

    Article  ADS  Google Scholar 

  6. A. Arshad, M. Jabbal, P. T. Sardari, M. A. Bashir, H. Faraji, and Y. Yan, Thermal Sci. Eng. Prog. 18, 100520 (2020).

    Article  Google Scholar 

  7. K. Chen, S. Wang, and M. Song, Int. J. Heat Mass Transfer 93, 108 (2016).

    Article  Google Scholar 

  8. D. Martínez-Maradiaga, A. Damonte, A. Manzo, J. H. K. Haertel, and K. Engelbrecht, Int. J. Heat Mass Transfer 142, 118429 (2019).

    Article  Google Scholar 

  9. B. Song, and Z. Guo, Int. J. Heat Mass Transfer 54, 4531 (2011).

    Article  Google Scholar 

  10. K. Chen, S. Wang, and M. Song, Int. J. Heat Mass Transfer 100, 737 (2016).

    Article  Google Scholar 

  11. Y. Aslan, J. Puskely, and A. Yarovoy, Int. J. Heat Mass Transfer 122, 432 (2018).

    Article  Google Scholar 

  12. T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Dover Publications, New York, 2000).

    MATH  Google Scholar 

  13. Y. Gu, L. Wang, W. Chen, C. Zhang, and X. He, Int. J. Heat Mass Transfer 108, 721 (2017).

    Article  Google Scholar 

  14. A. P. C. Cuco, F. L. de Sousa, and A. J. Silva Neto, Optim. Eng. 16, 165 (2015).

    Article  Google Scholar 

  15. E. Monier-Vinard, V. Bissuel, B. Rogie, N. Laraqi, and O. Daniel, IEEE Trans. Compon. Packag. Manufact. Technol. 8, 1042 (2018).

    Article  Google Scholar 

  16. J. P. Murcia, P. E. Réthoré, N. Dimitrov, A. Natarajan, J. D. Sørensen, P. Graf, and T. Kim, Renew. Energy 119, 910 (2018).

    Article  Google Scholar 

  17. B. D. Lackey, M. Pürrer, A. Taracchini, and S. Marsat, Phys. Rev. D 100, 024002 (2019), arXiv: 1812.08643.

    Article  ADS  Google Scholar 

  18. A. Ciccazzo, G. D. Pillo, and V. Latorre, Neural Comput. Applic. 24, 69 (2014).

    Article  Google Scholar 

  19. X. Zhang, B. Yang, T. Yu, and L. Jiang, IEEE Trans. Energy Convers. 35, 966 (2020).

    Article  ADS  Google Scholar 

  20. D. A. White, W. J. Arrighi, J. Kudo, and S. E. Watts, Comput. Methods Appl. Mech. Eng. 346, 1118 (2019).

    Article  ADS  Google Scholar 

  21. Z. Xu, Y. Gao, X. Wang, X. Tao, and Q. Xu, in Surrogate thermal model for power electronic modules using artificial neural network: Proceedings of the IECON 201945th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October, 2019, pp. 3160–3165.

  22. T. Goel, R. T. Haftka, W. Shyy, and N. V. Queipo, Struct. Multidiscip. Optim. 33, 199 (2007).

    Article  Google Scholar 

  23. J. Zhang, S. Chowdhury, and A. Messac, Struct. Multidiscip. Optim. 46, 223 (2012).

    Article  Google Scholar 

  24. W. Yang, R. T. Tan, J. Feng, J. Liu, Z. Guo, and S. Yan, in Deep joint rain detection and removal from a single image: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, USA, 21–26 July, 2017, pp. 1685–1694.

  25. D. Kang, X. Wang, X. Zheng, and Y. P. Zhao, Fuel 290, 120006 (2021).

    Article  Google Scholar 

  26. Z. Gong, P. Zhong, Y. Yu, W. Hu, and S. Li, IEEE Trans. Geosci. Remote Sens. 57, 3599 (2019).

    Article  ADS  Google Scholar 

  27. X. Chen, X. Chen, W. Zhou, J. Zhang, and W. Yao, Struct. Multidiscp. Optim. 62, 3127 (2020).

    Article  Google Scholar 

  28. C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer-Verlag, Berlin, Heidelberg, 2006).

    MATH  Google Scholar 

  29. J. A. Bennell, K. A. Dowsland, and W. B. Dowsland, Comput. Operations Res. 28, 271 (2001).

    Article  Google Scholar 

  30. N. Chernov, Y. Stoyan, and T. Romanova, Comput. Geometry 43, 535 (2010).

    Article  MathSciNet  Google Scholar 

  31. X. Chen, W. Yao, Y. Zhao, X. Chen, and W. Liu, Acta Astronaut. 180, 560 (2021).

    Article  ADS  Google Scholar 

  32. V. Badrinarayanan, A. Kendall, and R. Cipolla, IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481 (2017).

    Article  Google Scholar 

  33. A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Imagenet classification with deep convolutional neural networks: Proceedings of the 26th Advances in Neural Information Processing Systems 25, Lake Tahoe, USA, 3–6 December, 2012, pp. 1106–1114.

  34. P. Ballester, and R. M. Araujo, in On the performance of googlenet and alexnet applied to sketches: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI Press, Phoenix, 2016), pp. 1124–1128.

    Google Scholar 

  35. K. Simonyan, and A. Zisserman, arXiv: 1409.1556.

  36. K. He, X. Zhang, S. Ren, and J. Sun, in Deep residual learning for image recognition: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 27–30 June, 2016, pp. 770–778.

  37. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, in Going deeper with convolutions: Proceedings of the Conference on Computer Vision and Pattern Recognition, Boston, USA, 7–12 June, 2015, pp. 1–9.

  38. G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, in Densely connected convolutional networks: Proceedings of the Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 21–26 July, 2017, pp. 2261–2269.

  39. F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and Y. Bengio, arXiv: 1505.00393.

  40. E. Shelhamer, J. Long, and T. Darrell, IEEE Trans. Pattern Anal. Mach. Intell. 39, 640 (2017).

    Article  Google Scholar 

  41. O. Ronneberger, P. Fischer, and T. Brox, in U-net: Convolutional networks for biomedical image segmentation: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, edited by N. Navab, J. Hornegger, W. Wells, and A. F. Frangi, Munich, Germany, 5–9 October, 2015, Vol. 9351 of Lecture Notes in Computer Science (Springer, Cham, 2015), pp. 234–241.

  42. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, in Feature pyramid networks for object detection: Proceedings of the Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 21–26 July, 2017, pp. 936–944.

  43. S. Ioffe, and C. Szegedy, in Batch normalization: Accelerating deep network training by reducing internal covariate shift: Proceedings of the 32nd International Conference on Machine Learning, edited by F. R. Bach, and D. M. Blei, Lille, France, 6–11 July, 2015, pp. 448–456.

  44. Y. Wu, and K. He, in Group normalization: Proceedings of the 15th European Conference on Computer Vision—ECCV 2018, edited by V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Munich, Germany, 8–14 September, 2018 (Springer, Cham, 2018), pp. 3–19.

  45. A. S. Reimer, and A. F. Cheviakov, Comput. Phys. Commun. 184, 783 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  46. S. Kokoska, and D. Zwillinger, CRC Standard Probability and Statistics Tables And Formulae (CRC Press, Boca Raton, 1999).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yao.

Additional information

Note

The codes for reproducing this supervised DNN surrogate modeling benchmark are published at the project Web page: https://github.com/idrl-lab/supervised_layout_benchmark.

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11725211, 52005505, and 62001502), and Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No. CX20200023).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhao, X., Gong, Z. et al. A deep neural network surrogate modeling benchmark for temperature field prediction of heat source layout. Sci. China Phys. Mech. Astron. 64, 1 (2021). https://doi.org/10.1007/s11433-021-1755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1755-6

PACS number(s)

Navigation