Skip to main content
Log in

Retrieval of suspended sediment concentrations in the turbid water of the Upper Yangtze River using Landsat ETM+

  • Published:
Chinese Science Bulletin

Abstract

For the remote areas like the Longitudinal Range-Gorge Region (LRGR), it is hard to measure the suspended sediment concentrations (SSC). This study attempted to estimate SSC by employing the three atmospheric correction methods: COST, iCOST (modified from COST) and TZB5 (newly proposed). TZB5 can more accurately determine the atmospheric transmittance along the sun-ground surface path (TAUz) from the solar zenith angle (TZ), and it uses Band 5 to eliminate the path radiance of Bands 1–4. The water surface reflectance at Band 4 obtained using TZB5 has a stronger relation with SSC within the range of 0–3000 mg/L. The developed algorithms could accurately estimate SSC directly from ETM+ images in the turbid Upper Yangtze River, and were also effective in the Middle Yangtze River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ouillon S, Douillet P, Andrefouet S. Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia. Coral Reefs, 2004, 23: 109–122

    Article  Google Scholar 

  2. Schiebe F R, Harrington J A Jr, Ritchie J C. Remote sensing of suspended sediments: The Lake Chicot, Arkansas project. Int J Remote Sens, 1992, 13: 1487–1509

    Article  Google Scholar 

  3. Gao J, O’Leary S M. Estimation of suspended solids from aerial photographs in a GIS. Int J Remote Sens, 1997, 18(10): 2073–2086

    Article  Google Scholar 

  4. Ritchie J C, Schiebe F R. Water quality. In: Schultz G A, Engman E T, eds. Remote Sensing in Hydrology and Water Management. Berlin: Springer-Verlag, 2000. 287–303: 351–352

    Google Scholar 

  5. Slater P N, Doyle F J, Fritz N L, et al. Photographic systems for remote sensing. In: Estes J E, Hajic E J, Tinney L R, eds. Manual of Remote Sensing (2nd ed). Vol 1. American Society of Photgrammetry. Falls Church, VA, 1983. 231–291

    Google Scholar 

  6. Richards J A, Jia X. Remote Sensing Digital Image Analysis: An Introduction. Berlin: Springer, 1999. 313–337

    Google Scholar 

  7. Chavez P S Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ, 1988, 24: 459–479

    Article  Google Scholar 

  8. Lu D, Mausel P, Brandizio E, et al. Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon LBA research. Int J Remote Sens, 2002, 23(13): 2651–2671

    Article  Google Scholar 

  9. Chavez P S Jr. Atmospheric, solar, and MTF corrections for ERTS digital imagery, In: Proceedings of the American Society of Photogrammetry, 1975. 68

  10. Chavez P S Jr. Radiometric calibration of Landsat Thematic Mapper multispectral images. Photogr Eng Remote Sens, 1989, 55: 1285–1294

    Google Scholar 

  11. Chavez P S Jr. Image-based atmospheric corrections—Revisited and improved. Photogr Eng Remote Sens, 1996, 62: 1025–1036

    Google Scholar 

  12. Ritchie J C, Cooper C M. Comparison of measured suspended sediment concentration with suspended sediment concentrations estimated from Landsat MSS data. Int J Remote Sens, 1988, 9(3):379–387

    Article  Google Scholar 

  13. Li X. A united model for quantitative remote sensing of suspended sediment concentration. Int J Remote Sens, 1993, 14(14): 2665–2676

    Article  Google Scholar 

  14. Reddy M A, Srinivasulu S. Comparision of IRS-IB LISS-IIA pixel array sizes for estimating suspended solids concentration in Hussain Sagar Lake, Hyderabad, India—a statistical approach. Int J Remote Sens, 1994, 15: 3693–3706

    Article  Google Scholar 

  15. Islam M R, Yamaguchi Y, Ogawa K. Suspended sediment in the Ganges and Brahmaputra Rivers in Bangladesh: Observation from TM and AVHRR data. Hydrol Processes, 2001, 15: 493–509

    Article  Google Scholar 

  16. Doxaran D, Froidefond J M, Lavender S, et al. Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens Environ, 2002, 81: 149–161

    Article  Google Scholar 

  17. Gu H Y, Douglas I. Spatial and temporal dynamics of land degradation and fluvial erosion in the middle and upper Yangtze River basin, China. Land Degrad Rehabilit, 1989, 1: 217–235

    Article  Google Scholar 

  18. Lu X X, Higgitt D L. Recent changes of sediment yield in the Upper Yangtze, China. Environ Manage, 1998, 22(5): 697–709

    Article  PubMed  Google Scholar 

  19. Li Y T, Sun Z H, Zhang W. Variation of sediment transport and flood disaster in the middle reach of Yangtze River. J Sed Res (in Chinese), 2004, 2: 33–39

    CAS  Google Scholar 

  20. Ministry of Water Resources of China (1992), Code for River Suspended Sediment Measurement (GB 50159-92) (in Chinese). Beijing: China Planning Press, 1992. 1–68

    Google Scholar 

  21. Moran M S, Jackson D, Slate P N, et al. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sens Environ, 1992, 41: 169–184

    Article  Google Scholar 

  22. Hochberg E J, Andrefouet S, Tyler M R. Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments. IEEE Trans Geosci Remote Sens, 2003, 41(7): 1724–1729

    Article  Google Scholar 

  23. Ritchie J C, Cooper C M, Schiebe F R. The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi. Remote Sens Environ, 1990, 33: 137–148

    Article  Google Scholar 

  24. Khorram S, Cheshire H, Geraci AL, et al. Water quality mapping of Augusta Bay, Italy from Landsat-TM data. Int J Remote Sens, 1991, 12: 803–808

    Article  Google Scholar 

  25. Dekker A G, Vos R J, Peters S W M. Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int J Remote Sens, 2002, 23: 15–35

    Article  Google Scholar 

  26. Mertes L A K, Smith M O, Adams J B. Estimating suspended sediment concentrations in surface waters of the Amazon River Wetlands from Landsat Images. Remote Sens Environ, 1993, 43: 281–301

    Article  Google Scholar 

  27. Gin K Y H, Koh S T, Lin I I. Spectral irradiance profiles of suspended marine clay for the estimation of suspended sediment concentration in tropical waters. Int J Remote Sens, 2003, 24(16): 3235–3245

    Article  Google Scholar 

  28. Warrick J A, Mertes L A K, Siegel D A, et al. Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS. Int J Remote Sens, 2004, 25(10): 1995–2002

    Article  Google Scholar 

  29. Han L. Spectral reflectance with varying suspended sediment concentrations in pure and algal-laden waters. Photogr Eng Remote Sens, 1997, 63(6): 701–705

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang JianJun.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2003CB415105-6) and National University of Singapore (Grant No. R-109-000-034-112)

About this article

Cite this article

Wang, J., Lu, X. & Zhou, Y. Retrieval of suspended sediment concentrations in the turbid water of the Upper Yangtze River using Landsat ETM+. Chin. Sci. Bull. 52 (Suppl 2), 273–280 (2007). https://doi.org/10.1007/s11434-007-7012-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-7012-6

Keywords

Navigation