Skip to main content
Log in

Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite

  • Articles
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

Zerovalent iron nanoparticles have been successfully synthesized using sodium borohydride solution reduction of ferric trichloride hexahydrate in the presence of montmorillonite as an effective protective reagent and support as well. A combination of characterizations reveals that with high monodispersity these obtained iron nanoparticles are well dispersed on clay surface, virginal from boron related impurity, and oxidation resistant well with iron core-iron oxide shell structure. The shell thickness of 3 nm remains almost invariable under ambient conditions. The size control of these iron nanoparticles has been achieved by tailoring the amount of the ferric iron, which mainly depends on the protective action of montmorillonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. López-López M T, Gómez-Ramírez A, Durán J D G, et al. Preparation and characterization of iron-based magnetorheological fluids stabilized by addition of oganoclay prticles. Langmuir, 2008, 24: 7076–7084

    Article  Google Scholar 

  2. Stuckey D J, Carr C A, Martin-Rendon E, et al. Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells, 2006, 24: 1968–1975

    Article  Google Scholar 

  3. Hayashi K, Ohsugi M, Kamigaki M, et al. Functional effects of carbon-coated iron metal particles for magnetic recording media. Electrochem Solid-State Lett, 2002, 5: J9–J12

    Article  Google Scholar 

  4. Guczia L, Steflerb G, Gesztia O, et al. CO hydrogenation over cobalt and iron catalysts supported over multiwall carbon nanotubes: Effect of preparation. J Catal, 2006, 244: 24–32

    Article  Google Scholar 

  5. Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol, 1997, 31: 2154–2156

    Article  Google Scholar 

  6. Ponder S M, Darab J G, Mallouk T E, et al. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol, 2000, 34: 2564–2569

    Article  Google Scholar 

  7. Wilkin R, McNeil M S. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage. Chemosphere, 2003, 53: 715–725

    Article  Google Scholar 

  8. Sun Y P, Li X Q, Cao J, et al. Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci, 2006, 120: 47–56

    Article  Google Scholar 

  9. Rodrigues A R, Soares J M, Machado F L A, et al. Synthesis of α-Fe particles using a modified metal-membrane incorporation technique. J Magn Magn Mater, 2007, 310: 2497–2499

    Article  Google Scholar 

  10. Zhang L, Manthiram A. Ambient temperature synthesis of fine metal particles in montmorillonite clay and their magnetic properties. Nanostruct Mater, 1996, 7: 437–451

    Article  Google Scholar 

  11. Balakrishnan S, Bonder M J, Hadjipanayis G C. Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles. J Magn Magn Mater, 2009, 321: 117–122

    Article  Google Scholar 

  12. Kuhn L T, Bojesen A, Timmermann L, et al. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles. J Phys Condes Matter, 2002, 14: 13551–13567

    Article  Google Scholar 

  13. Carpenter E E, Calvin S, Stroud R M, et al. Passivated iron as core-shell nanoparticles. Chem Mater, 2003, 15: 3245–3246

    Article  Google Scholar 

  14. Shafranovsky E A, Petrov Yu I. Aerosol Fe nanoparticles with the passivating oxide shell. J Nanopart Res, 2004, 6: 71–90

    Article  Google Scholar 

  15. Wang C M, Baer D R, Thomas L E, et al. Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. J Appl Phys, 2005, 98: 094308–094307

    Article  Google Scholar 

  16. Mahajan D, Desai A, Rafailovich M, et al. Synthesis and characterization of nanosized metals embedded in polystyrene matrix. Composites Part B, 2006, 37: 74–80

    Article  Google Scholar 

  17. Pal T, Sau T K, Jana N R. Reversible formation and dissolution of silver nanoparticles in aqueous surfactant media. Langmuir, 1997, 13: 1481–1485

    Article  Google Scholar 

  18. Niu Y, Crooks R M. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C R Chimie, 2003, 6: 1049–1059

    Google Scholar 

  19. Najman R, Cho J K, Coffey A F, et al. Entangled palladium nanoparticles in resin plugs. Chem Commun, 2007, 47: 5031–5033

    Article  Google Scholar 

  20. Calla J T, Davis R J. Investigation of alumina-supported Au catalyst for CO oxidation by isotopic transient analysis and X-ray absorption spectroscopy. J Phys Chem B, 2005, 109: 2307–2314

    Article  Google Scholar 

  21. Carrettin S, McMorn P, Johnston P, et al. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem Commun, 2002, 7: 696–697

    Article  Google Scholar 

  22. Moreno M S, Weyland M, Midgley P A, et al. Highly anisotropic distribution of iron nanoparticles within MCM-41 mesoporous silica. Micron, 2006, 37: 52–56

    Article  Google Scholar 

  23. Manikandan D, Divakar D, Sivakumar T. Utilization of clay minerals for developing Pt nanoparticles and their catalytic activity in the selective hydrogenation of cinnamaldehyde. Catal Commun, 2007, 8: 1781–1786

    Article  Google Scholar 

  24. Yuan P, Fan M D, Yang D, et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J Hazard Mater, 2009, 166: 821–829

    Article  Google Scholar 

  25. Papp S, Szel J, Oszko A, et al. Synthesis of polymer-stabilized nanosized rhodium particles in the interlayer space of layered silicates. Chem Mater, 2004, 16: 1674–1685

    Article  Google Scholar 

  26. Király Z, Dékány I, Mastalir Á, et al. In situ generation of palladium nanoparticles in smectite clays. J Catal, 1996, 161: 401–408

    Article  Google Scholar 

  27. Pinnavaia T J. Intercalated clay catalysts. Science, 1983, 220: 365–371

    Article  Google Scholar 

  28. Paek S M, Jang J U, Hwang S J, et al. Exfoliation-restacking route to Au nanoparticle-clay nanohybrids. J Phys Chem Solids, 2006, 67: 1020–1023

    Article  Google Scholar 

  29. Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298: 2176–2179

    Article  Google Scholar 

  30. Bergaya F, Theng B K J, Lagaly G. Handbook of Olay Science. Amsterdam/London: Elsevier, 2006

    Google Scholar 

  31. Chen B, Evans J R G. Preferential intercalation in polymer-clay nanocomposites. J Phys Chem B, 2004, 108: 14986–14990

    Article  Google Scholar 

  32. Mackenzie R C. A micromethod for determination of CEC of clay. J Colloid Sci, 1951, 6, 219–222

    Google Scholar 

  33. Huang K C, Ehrman S H. Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds. Langmuir, 2007, 23: 1419–1426

    Article  Google Scholar 

  34. Huang K C, Chou K S. Microstructure changes to iron nanoparticles during discharge/charge cycles. Electrochem Commun, 2007, 9: 1907–1912

    Article  Google Scholar 

  35. Aihara N, Torigoe K, Esumi K. Preparation and characterization of gold and silver nanoparticles in layered Laponite suspensions. Langmuir, 1998, 14: 4945–4949

    Article  Google Scholar 

  36. Fung K K, Qin B X, Zhang X X. Passivation of α-Fe nanoparticle by epitaxial γ-Fe2O3 shell. Mater Sci Eng A, 2000, 286: 135–138

    Article  Google Scholar 

  37. Király Z, Veisz B, Mastalir Á, et al. Preparation of ultrafine palladium particles on cationic and anionic clays, mediated by oppositely charged surfactants: Catalytic probes in hydrogenations. Langmuir, 2001, 17: 5381–5387

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Yuan.

About this article

Cite this article

Fan, M., Yuan, P., Chen, T. et al. Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite. Chin. Sci. Bull. 55, 1092–1099 (2010). https://doi.org/10.1007/s11434-010-0062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-0062-1

Keywords

Navigation