Skip to main content
Log in

Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride

  • Article
  • Environmental Science & Technology
  • Published:
Chinese Science Bulletin

Abstract

CO2 mineralization and utilization is a new area for reducing the CO2 emissions. By reacting with natural mineral or industrial waste, CO2 can be transformed into valuable solid carbonate (such as calcium carbonate or magnesium carbonate) with recovery of some products simultaneously. In this paper, a novel method was proposed to mineralize CO2 by means of magnesium chloride with small energy consumption. In this method, magnesium chloride was firstly transformed into magnesium hydroxide by electrolysis. The formed magnesium hydroxide showed high reactivity to mineralize CO2. In our study, even at low concentration, CO2 can be effectively mineralized by this method, which makes it possible to directly mineralize flue gas CO2, avoiding the expensive process of CO2 capture and purification. Moreover, valuable products such as hydromagnesite and nesquehonite can be recovered by this method. Because of the wide distribution of magnesium chloride in nature, large-scale CO2 mineralization is potential by means of magnesium chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Keith DW (2009) Why capture CO2 from the atmosphere? Science 325:1654–1655

    Article  Google Scholar 

  2. Xie HP (2010) CO2 sequestration and climate change. Sci Technol Rev 3 (in Chinese)

  3. Xie HP (2010) Developing low-carbon technology to promoting green economy. Energy China 32:5–10

    Google Scholar 

  4. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723

    Article  Google Scholar 

  5. Friedlingstein P, Solomon S, Plattner GK et al (2011) Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation. Nat Climate Change 1:457–461

    Article  Google Scholar 

  6. Lackner KS (2003) A guide to CO2 sequestration. Science 300:1677–1678

    Article  Google Scholar 

  7. IPCC (2005) Special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge

  8. Jun YS, Giammar DE, Werth CJ (2013) Impacts of geochemical reactions on geologic carbon sequestration. Environ Sci Technol 47:3–8

    Article  Google Scholar 

  9. Hou MZ, Xie HP, Yoon JS (2010) Underground Storage of CO2 and Energy. CRC Press, Boca Raton

    Google Scholar 

  10. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652

    Article  Google Scholar 

  11. Xie HP (2012) Simultaneous recovery of national resources and mineralization of CO2: A new CCU method. Technical Report, Energy and mining Science, Chinese Academy of Engineering (in Chinese)

  12. Xie HP, Xie LZ, Wang YF et al (2012) Global carbon dioxide emissions should not be CCS, should be CCU method. J Sichuan Univ Eng Sci 44:1–5 (in Chinese)

    Google Scholar 

  13. Xie HP, Wang YF, Ju Y et al (2013) Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin Sci Bull 58:128–132

    Article  Google Scholar 

  14. Seifritz W (1990) CO2 disposal by means of silicates. Nature 345:486

    Article  Google Scholar 

  15. Gerdemann SJ, O’Conner WK, Dahlin DC et al (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41:2587–2593

    Article  Google Scholar 

  16. Kelemen PB, Matter J (2008) In situ carbonation of peridotite for CO2 storage. Proc Natl Acad Sci USA 105:17295–17300

    Article  Google Scholar 

  17. Koukouzas N, Gemeni V, Ziock HJ (2009) Sequestration of CO2 in magnesium silicates, in Western Macedonia. Greece Int J Miner Process 93:179–186

    Article  Google Scholar 

  18. Loring JS, Thompson CJ, Wang Z et al (2011) In situ infrared spectroscopic study of forsterite carbonation in wet supercritical CO2. Environ Sci Technol 45:6204–6210

    Article  Google Scholar 

  19. Park AHA, Fan LS (2004) CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem Eng Sci 59:5241–5247

    Article  Google Scholar 

  20. Fagerlund J, Teir S, Nduagu E et al (2009) Carbonation of magnesium silicate mineral using a pressurised gas/solid process. Energy Procedia 1:4907–4914

    Article  Google Scholar 

  21. Maroto-Valer MM, Fauth DJ, Kuchta ME et al (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technol 86:1627–1645

    Article  Google Scholar 

  22. Huijgen WJJ, Comans RNJ, Witkamp GJ (2007) Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energ Convers Manage 48:1923–1935

    Article  Google Scholar 

  23. Huntzinger DN, Gierke JS, Kawatra SK et al (2009) Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol 43:1986–1992

    Article  Google Scholar 

  24. Sun J, Bertos MF, Simons SJR (2008) Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2. Energy Environ Sci 1:370–377

    Article  Google Scholar 

  25. Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–9682

    Article  Google Scholar 

  26. Stolaroff JK, Lowry GV, Keith DW (2005) Using CaO- and MgO-rich industrial waste streams for carbon sequestration. Energ Convers Manage 46:687–699

    Article  Google Scholar 

  27. IEA (2011) CO2 emission from fuel combustion highlights. France: OECD/IEA

  28. Faverjon F, Durand G, Rakib M (2006) Regeneration of hydrochloric acid and sodium hydroxide from purified sodium chloride by membrane electrolysis using a hydrogen diffusion anode-membrane assembly. J Membr Sci 284:323–330

    Article  Google Scholar 

  29. Faverjon F, Rakib M, Durand G (2005) Electrochemical study of a hydrogen diffusion anode-membrane assembly for membrane electrolysis. Electrochim Acta 51:386–394

    Article  Google Scholar 

  30. Holze S, Jorissen J, Fischer C et al (1994) Hydrogen consuming anodes for energy saving in sodium sulphate electrolysis. Chem Eng Technol 17:382–389

    Article  Google Scholar 

  31. Jung KS, Keener TC, Green VC et al (2004) CO2 absorption study in a bubble column reactor with Mg(OH)2. Int J Environ Technol and Manage 4:116–136

    Google Scholar 

  32. Cao X, Chen XP (2000) The technology of desulfurization by means of magnesium hydroxide. Nonferrous Metal Eng Res 21:47–51

    Google Scholar 

  33. Rao TR, Chohan VS (1995) Kinetics of thermal decomposition of hydromagnesite. Chem Eng Technol 18:359–363

    Article  Google Scholar 

  34. Hollingbery LA, Hull TR (2010) The thermal decomposition of huntite and hydromagnesite—a review. Thermochim Acta 509:1–11

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by International Cooperative Research Project of the Ministry of Science and Technology (2012DFA60760), the Natural Science Foundation of China (51120145001, 51254002), the National Natural Science Funds for Distinguished Young Scholars (51125017), and the Natural Basic Research Projects of China (2011CB201201, 2010CB226804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Xie.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Wang, Y., Chu, W. et al. Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride. Chin. Sci. Bull. 59, 2882–2889 (2014). https://doi.org/10.1007/s11434-014-0388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0388-1

Keywords

Navigation