Skip to main content
Log in

Comparison of intact rock failure criteria using various statistical methods

  • Short Communication
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper compares four different rock failure criteria based on triaxial test data of ten different rock strength data using various statistical methods. Least square, least median square and re-weighted least square techniques are used to determine the best fit parameters utilizing the experimental data that describes the failure state for each criterion. The least median square method could identify the scattered data and these scattered data points are observed at higher confining stress. It was observed that the fitting of failure criteria to different rock strength data depends upon the statistical methods used. The prediction of unconfined compressive strength and failure strength for different rocks estimated using various statistical methods are discussed in terms of different statistical performances of the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

σ 1 :

Major principal stresses

σ 3 :

Minor principal stresses

C 0 :

Uniaxial compressive strength of intact rock for Hoek–Brown failure criteria

m, s :

The material parameters for Hoek–Brown failure criteria

\( \hat{\sigma } \) :

Standard deviation for least median square method

r i :

Residuals from least median square fit

C 0, b and α:

Material parameters for Yudhbir et al. failure criterion

C 0, σ t and β :

Material parameters for Sheorey failure criterion

σ 1predicted :

Predicted major principal stresses

σ 1Experiment :

Experimental major principal stresses

μ :

Mean value

σ :

Standard deviation

References

  1. Abdullah H, Dhawan AK (2004) Some implications of empiricism and assumptions in laboratory testing. SINOROCK2004 Paper 1A 19

  2. Carter BJ, Scott Duncan EJ, Lajtai EZ (1991) Fitting strength criteria to intact rocks. Geotech Geol Eng 9:73–81. doi:10.1007/BF00880985

    Article  Google Scholar 

  3. Colmenares LB, Zoback MD (2002) A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Min Sci 39:695–729. doi:10.1016/S1365-1609(02)00048-5

    Article  Google Scholar 

  4. Deb K (2001) Multi-objective optimization using evolutionary algorithms, 1st edn. Wiley, Chichester

    Google Scholar 

  5. Desai CS (2001) Mechanics of materials and interfaces: a disturbed state concept, 1st edn. CRC press publication, Boca Raton

    Google Scholar 

  6. Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Eng 106(9):1013–1035

    Google Scholar 

  7. Franklin JA, Hoek E (1970) Development in triaxial testing technique. Rock Mech 2:223–228. doi:10.1007/BF01245576

    Article  Google Scholar 

  8. Kim MK, Lade PV (1984) Modeling rock strength in three dimensions. Int J Rock Mech Min Sci Geomech Abstr 21:21–31. doi:10.1016/0148-9062(84)90006-8

    Article  MATH  Google Scholar 

  9. Li L, Gamache M, Aubertin M (2000) Parameter determination for nonlinear stress criteria using a simple regression tool. Can Geotech J 37:1332–1347. doi:10.1139/cgj-37-6-1332

    Article  Google Scholar 

  10. Mostyn G, Douglas K (2000) Strength of intact rock and rock masses. In: Proc. GeoEngg 2000, Melbourne, Australia, pp 1389–1421

  11. Pariseau WG (2007) Fitting failure criteria to laboratory strength test. Int J Rock Mech Min Sci 44:637–646. doi:10.1016/j.ijrmms.2006.09.006

    Article  Google Scholar 

  12. Press WH, Teukolsky SA, Vellerling WT, Flannery BP (2000) Numerical recipes in FORTRAN: the art of scientific computing. Cambridge University Press, New Delhi

  13. Ramamurthy T, Rao GV, Rao KS (1985) A shear criterion for rocks. In: Proc. Indian Geotechnical Conference, Roorkee. 1:59–64

  14. Rousseeuw PJ (1998) Robust estimation and identifying outliers. In: Wadsworth HM (ed) Handbook of statistical method for engineers and scientists. McGraw-Hill, New York, pp 17.1–17.26

  15. Schwartz AE (1964) Failure of rock in the triaxial shear test. In: Proc. 6th US symposium rock mechanics. Univ of Missouri Rolla, pp 109–151

  16. Shah S, Hoek E (1992) Simplex reflection analysis of laboratory strength data. Can Geotech J 29:278–287

    Article  Google Scholar 

  17. Sheorey PR (1997) Empirical rock failure criteria. Balkema, Rotterdam

    Google Scholar 

  18. Yu MH (2002) Advances in strength theories of materials under the complex stress state in the 20th century. Appl Mech Rev 55(3):169–218. doi:10.1115/1.1472455

    Article  Google Scholar 

  19. Yudhbir, Lemanza W, and Prinzl F (1983) An empirical failure criterion for rock masses. In: Proc. 5th Congress on rock mechanics, Melbourne, pp B1–B8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S.K., Basudhar, P.K. Comparison of intact rock failure criteria using various statistical methods. Acta Geotech. 4, 223–231 (2009). https://doi.org/10.1007/s11440-009-0088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-009-0088-1

Keywords

Navigation