Skip to main content
Log in

Analyses on granular mass movement mechanics and deformation with distinct element numerical modeling: implications for large-scale rock and debris avalanches

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A large-scale avalanche of Earth material is modeled here as a granular flow using a distinct element numerical model PFC 2D. Such failures occur in a variety of geological settings and are known to occur frequently over geologic time-scales transporting significant volumes of material basinward. Despite this, they remain poorly understood. The model used here begins with a listric failure, typical of the flank collapse of a volcanic cone, and describes the movement of an assembly of several thousand particles from failure to deposition. Within the model, each particle possesses its own material properties and interacts with its immediate neighbors and/or the basal boundary during emplacement. The general mechanics of the particle assembly are observed by monitoring the stresses, displacements, and velocities of distinct sections of the avalanche body. We monitor the avalanches’ energy regime (e.g., gravitational influence, energy dissipation by friction, kinetic energy evolution, and avalanche body strain). The addition of colored markers of varying geometry to the pre-failure avalanche was also used to make qualitative observations on the internal deformation that occurs during avalanche emplacement. A general stretching and thinning of the avalanche is observed. Monitoring of vertical and horizontal variations in stress, strain, porosity, and relative particle stability indicate that the lower more proximal sections of the avalanche are subject to higher stresses. These stresses are observed to be most significant during the initial phases of failure but decline thereafter; a situation likely to be conducive to block fragmentation and in developing a basal shear layer in real-world events. The model also shows how an avalanche which is initially influenced purely by gravity (potential energy) develops into a fully flowing assemblage as downslope momentum is gained and kinetic energy increases. The horizontal transition where the failure meets the run-out surface is recognized as a key area in emplacement evolution. The model has particular relevance to volcanic flank collapses and consequently the implications of the model to these types of failure and the geological products that result are considered in detail although the model is relevant to any form of large-scale rock or debris avalanche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Azzoni A, de Freitas MH (1995) Experimentally gained parameters, decisive for rock fall analysis. Rock Mech Rock Eng 28:111–124. doi:10.1007/BF01020064

    Article  Google Scholar 

  2. Barla G, Barla M (2001) Investigation and the modelling of the Brevna Glacier rock avalanche on the Mont Blanc range. Eurorock 2001:35–40

    Google Scholar 

  3. Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342. doi:10.1007/s004450050300

    Article  Google Scholar 

  4. Campbell CS (1989) Self-lubrication for long runout landslides. J Geol 97:653–665

    Article  Google Scholar 

  5. Campbell CS (1990) Rapid granular flows. Annu Rev Fluid Mech 22:57–92. doi:10.1146/annurev.fl.22.010190.000421

    Article  Google Scholar 

  6. Campbell CS, Cleary PW, Hopkins M (1995) Large-scale landslide simulations: global deformation, velocities and basal friction. J Geophys Res 100:8267–8273. doi:10.1029/94JB00937

    Article  Google Scholar 

  7. Clavero JE, Sparks RSJ, Huppert HA (2002) Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bull Volcanol 64:40–54. doi:10.1007/s00445-001-0183-0

    Article  Google Scholar 

  8. Cleary PW, Campbell CS (1993) Self-lubrication for long runout landslides: examination by computer simulation. J Geophys Res 98:21911–21924. doi:10.1029/93JB02380

    Article  Google Scholar 

  9. Cleary PW, Mériaux C, Owen PJ (2007) Prediction of quasi-static fall of planar granular columns using 2D discrete element modeling. In: Proceedings of the fourth international conference on discrete element methods, 27–29 August, Brisbane, Australia, CD-ROM, 12 pp

  10. Crosta G, Calvetti F, Imposimato S, Roddeman D, Frattini P, Agliardi F (2001) Granular flows and numerical modelling of landslides (online). Universita di Milano, available from: http://damocles.irpi.pg.cnr.it/docs/reports/Granular_Flows_Thematic_Report.pdf. Accessed 30 Nov 2006

  11. Cundall PA (1971) A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings of the symposium of the international society of rock mechanics, Nancy, France, 1, paper no. II-8

  12. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  13. Davies TRH, McSaveney MJ (1999) Runout of dry granular avalanches. Can Geotech J 36(2):313–320. doi:10.1139/cgj-36-2-313

    Article  Google Scholar 

  14. Davies TRH, McSaveney MJ (2002) Dynamic simulation of the motion of fragmenting rock avalanches. Can Geotech J 36:313–320. doi:10.1139/cgj-36-2-313

    Article  Google Scholar 

  15. Davies TRH, McSaveney MJ (2008) The role of rock fragmentation in the motion of large landslides. Eng Geol doi:1016/j.enggeo.2008.11.004

  16. Davies TRH, McSaveney MJ, Beetham RD (2006) Rapid block glides: slide-surface fragmentation in New Zealand’s Waikaremoana landslide. Q J Eng Geol Hydrogeol 39:115–129. doi:10.1144/1470-9236/05-041

    Article  Google Scholar 

  17. Deluzarche RB, Dedecker F, Fry JJ (2003) Static and dynamic analysis of stability of rocky slopes via particle methods. In: Konietzky H (ed) Numerical modelling in micromechanics via particle methods (Proceedings of the 1st international PFC symposium, Gelsenkirchen, Germany, 6–8 November 2002), Balkema, Lisse, pp 125–131

  18. Drake TG (1990) Structural features in granular flows. J Geophys Res 95:8681–8696. doi:10.1029/JB095iB06p08681

    Article  Google Scholar 

  19. Endo K, Sumita M, Machida M, Furuichi M (1989) The 1984 collapse and debris avalanche deposits of Ontake volcano, central Japan. In: Latter JH (ed) Volcanic Hazards: IAVCEI proceedings in volcanology 1. Springer, Berlin, Heidelberg, pp 210–229

    Google Scholar 

  20. Glicken HX (1991) Sedimentary architecture for large volcanic debris avalanches. In: Smith GA, Fisher RV (eds) Sedimentation in volcanic settings. SEPM Special Publications, 45, pp 99–106

  21. Glicken HX (1998) Rock slide debris avalanche of May 18, 1980 Mount St. Helens volcano, Washington. Bull Geol Soc Jpn 49:55–105

    Google Scholar 

  22. Itasca (2004) Theory and background. Third edition (version 3.1), November, 2004

  23. Le Friant A, Boudon G, Komorowski JC, Heinrich P, Semet MP (2006) Potential flank-collapse of Soufriére volcano, Guadeloupe, Lesser Antilles? Numerical simulation and hazards. Nat Hazards 39:381–393. doi:10.1007/s11069-005-6128-8

    Article  Google Scholar 

  24. Legros F (2002) The mobility of long runout landslides. Eng Geol 63:301–331. doi:10.1016/S0013-7952(01)00090-4

    Article  Google Scholar 

  25. Legros F, Cantagrel JM, Devourd B (2000) Pseudotachylyte (Frictionite) at the base of the Arequipa Volcanc Landslide deposit (Peru): implications for emplacement mechanisms. J Geol 108:601–611. doi:10.1086/314421

    Article  Google Scholar 

  26. Lorig LJ, Gibson W, Alvial J, Cuevas J (1995) Gravity flow simulations with the Particle Flow Code (PFC). ISRM News J 3:18–24

    Google Scholar 

  27. Melosh HJ (1979) Acoustic fluidization—a new geologic process? J Geophys Res 84:7513–7520

    Google Scholar 

  28. Morgan JK (2006) Volcanotectonic interactions between Mauna Loa and Kilauea: insights from 2-D discrete element simulations. J Volcanol Geotherm Res 151:109–131. doi:10.1016/j.jvolgeores.2005.07.025

    Article  Google Scholar 

  29. Morgan JK, McGovern PJ (2003) Discrete element simulations of volcanic spreading: implications for the structure of Olypmus Mons, 35th lunar and planetary science conference, abstract 2008

  30. Morgan JK, McGovern PJ (2005) Discrete element simulations of gravitational volcanic deformation. 1: deformation structures and geometries. J Geophys Res 110:B05403. doi:10.1029/2004JB003253

    Article  Google Scholar 

  31. Morgan JK, McGovern PJ (2005) Discrete element simulations of gravitational volcanic deformation. 2: mechanical analysis. J Geophys Res 110:B05403. doi:10.1029/2004JB003252

    Article  Google Scholar 

  32. Preh A, Poisel R (2006) Models for landslide behaviour with large displacements by the particle Flow Code. Felsbau 25:31–37

    Google Scholar 

  33. Reid ME, Christian SB, Brien DL (2000) Gravitational stability of three-dimensional stratovolcano edifices. J Geophys Res 105:6043–6056. doi:10.1029/1999JB900310

    Article  Google Scholar 

  34. Reubi O, Hernandez J (2000) Volcanic debris avalanche deposits of the upper Marrone valley (Cantal Volcano, France): evidence for contrasted formation and transport mechanisms. J Volcanol Geotherm Res 102:271–286. doi:10.1016/S0377-0273(00)00191-8

    Article  Google Scholar 

  35. Schneider JL, Fisher RV (1998) Transport and emplacement mechanisms of large volcanic debris avalanches: evidence from the northwest sector of Cantal volcano (France). J Volcanol Geotherm Res 83:141–165. doi:10.1016/S0377-0273(98)00016-X

    Article  Google Scholar 

  36. Schuster RL, Crandell DR (1984) Catastrophic debris avalanches from volcanoes. IV international symposium on landslides proceedings, vol 1, pp 567–572

  37. Shea T, de Vries B, Pilato M (2008) Emplacement mechanisms of contrasting debris avalanches at Volcán Mombacho (Nicaragua), provided by structural and facies analysis. Bull Volcanol 70:899–921. doi:10.1007/s00445-007-0177-7

    Article  Google Scholar 

  38. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits and associated eruptions. J Volcanol Geotherm Res 22:163–197. doi:10.1016/0377-0273(84)90002-7

    Article  Google Scholar 

  39. Sousa J, Voight B (1995) Multiple-pulsed debris avalanche emplacement at Mount St. Helens in 1980: evidence from numerical continuum flow simulations. J Volcanol Geotherm Res 66:227–250. doi:10.1016/0377-0273(94)00067-Q

    Article  Google Scholar 

  40. Staron L (2008) Mobility of long-runout rock flows: a discrete numerical investigation. Geophys J Int 172:455–463. doi:10.1111/j.1365-246X.2007.03631.x

    Article  Google Scholar 

  41. Takarada S, Ui T, Yamamoto Y (1999) Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches, Japan. Bull Volcanol 60:508–522. doi:10.1007/s004450050248

    Article  Google Scholar 

  42. Tommasi P et al. (2003) Analysis of rock avalanches generated by large planar rock slides by means of numerical methods for discontinua. Technology roadmap for rock mechanics (Proceedings of the 10th congress of the ISRM, Johannesburg), vol 2, pp 1235–1240

  43. Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with nonvolcanic stream deposits. J Volcanol Geotherm Res 18:135–150. doi:10.1016/0377-0273(83)90006-9

    Article  Google Scholar 

  44. Uttini A, Apuani T, Massetti M, Vezzoli L, Corazzato C (2006) First contribution to debris slope stability analysis of Sciara del Fuoco (Stromboli island, Italy) via particle numerical modeling. Geophys Res Abstr 8:08103

    Google Scholar 

  45. Uttini A, Apuani T, Massetti M (2007) The Sciara del Fuoco debris stability (Stromboli volcano, Italy): a distinct element numerical modelling of possible triggering mechanisms. Geophys Res Abstr 9:04319

    Google Scholar 

  46. Voight B (2000) Structural stability of andesite volcanoes and lava domes. Philosophical Transactions of the Royal Science A. Math Phys Eng Sci 358:1663–1703. doi:10.1098/rsta.2000.0609

    Article  Google Scholar 

  47. Voight B, Elsworth D (1997) Failure of volcano slopes. Geotechnique 47:1–31

    Article  Google Scholar 

  48. Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mullineaux DR (eds) The 1980 eruption of Mount St. Helens, Washington, U.S. Geological Survey Professional Paper, 1250, pp 347–377

  49. Voight B, Janda RJ, Glicken HX, Douglass PM (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique 33:243–273

    Article  Google Scholar 

  50. Ward SN, Day S (2006) Particulate kinematic simulations of debris avalanches: interpretation of deposits and landslide seismic signals of Mount Saint Helens, 1980 May 18. Geophys J Int 167:991–1004. doi:10.1111/j.1365-246X.2006.03118.x

    Article  Google Scholar 

Download references

Acknowledgements

N. Thompson would like to thank Bournemouth University which provided the studentship that has funded this research. The authors would also like to thank David Potyondy, Peter Cundall, and Roger Hart of HCItasca for their reviews and encouraging comments as well as Alexander Preh and an anonymous reviewer, whose suggestions have helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, N., Bennett, M.R. & Petford, N. Analyses on granular mass movement mechanics and deformation with distinct element numerical modeling: implications for large-scale rock and debris avalanches. Acta Geotech. 4, 233–247 (2009). https://doi.org/10.1007/s11440-009-0093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-009-0093-4

Keywords

Navigation