Skip to main content
Log in

Finite element study of patterns of shear zones in granular bodies during plane strain compression

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Numerical investigations of patterns of shear zones in granular bodies obtained during quasi-static plane strain compression tests were performed. The effect of a spatially correlated stochastic distribution of the initial void ratio and roughness of horizontal plates was analyzed. To describe a mechanical behavior of a cohesionless granular material during a monotonic deformation path in a plane strain compression test, a micro-polar hypoplastic constitutive model was used. FE calculations were carried out with both initially dense and initially loose cohesionless sand. A Latin hypercube method was applied to generate Gaussian truncated random fields of initial void ratio in a granular specimen. A weak correlation of the initial void ratio in both directions and its large standard deviation were assumed for all specimens. The horizontal boundaries were either ideally smooth or very rough. The FE results show similar patterns of shear zones as compared to experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al Hattamleh O, Muhunthan B, Zbib HM (2005) Stress distribution in granular heaps using multi-slip formulation. Int J Numer Anal Methods Geomech 29:713–727

    Google Scholar 

  2. Alshibli KA, Sture S (2000) Shear band formation in plane strain experiments of sand. J Geotech Geoenviron Eng ASCE 126(6):495–503

    Article  Google Scholar 

  3. Andrade JE, Baker JW, Ellison KC (2008) Random porosity fields and their influence on the stability of granular media. Int J Numer Anal Methods Geomech 32:1147–1172

    Article  Google Scholar 

  4. Bauer E (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils Found 36(1):13–26

    Google Scholar 

  5. Bielewicz E, Górski J (2002) Shell with random geometric imperfections. Simulation-based approach. Int J Non-linear Mech 37(4–5):777–784

    Article  MATH  Google Scholar 

  6. Brinkgreve R (1994) Geomaterial models and numerical analysis of softening. Dissertation, Delft University, pp 1–153

  7. Chambon R (1989) A set of incrementally non-linear consistent constitutive equations for non viscous soils, solution for some consistency problems. CRAS 308(II):1571–1576

    Google Scholar 

  8. Chambon R, Moullet JC (2004) Uniqueness studies in boundary value problems involving some second gradient models. Comput Methods Appl Mech Eng 193:2771–2796

    Article  MATH  MathSciNet  Google Scholar 

  9. Chambon R, Caillerie D, Hassan El (1998) One dimensional localisation studied with a second grade model. Eur J Mech A/Solids 17(4):637–656

    Article  MATH  MathSciNet  Google Scholar 

  10. Darve F, Flavigny E, Megachou M (1995) Yield surfaces and principle of superposition revisited by incrementally non-linear constitutive relations. Int J Plast 11(8):927–948

    Google Scholar 

  11. de Borst R, Mühlhaus H-B (1992) Gradient dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng 35:521–539

    Article  MATH  Google Scholar 

  12. Desrues J, Chambon R (1989) Shear band analysis for granular materials—the question of incremental linearity. Ing Archiv 59:187–196

    Article  Google Scholar 

  13. Desrues J, Viggiani C (2004) Strain localization in sand: overview of the experiments in Grenoble using stereophotogrammetry. J Numer Anal Methods Geomech 28(4):279–321

    Article  Google Scholar 

  14. Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3):529–546

    Article  Google Scholar 

  15. Górski J (2006) Non-linear models of structures with random geometric and material imperfections simulation-based approach, Gdansk University of Technology, p 68

  16. Gudehus G (1996) A. comprehensive constitutive equation for granular materials. Soils Found 36(1):1–12

    Google Scholar 

  17. Gudehus G, Nübel K (2004) Evolution of shear bands in sand. Geotechnique, 113 54(3):187–201

    Google Scholar 

  18. Han C, Vardoulakis I (1991) Plane strain compression experiments on water saturated fine-grained sand. Geotechnique 41:49–78

    Article  Google Scholar 

  19. Harris WW, Viggiani G, Mooney MA, Finno RJ (1995) Use of stereophotogrammetry to analyze the development of shear bands in sand. Geotech Test J 18(4):405–420

    Article  Google Scholar 

  20. Herle I, Gudehus G (1999) Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech Cohes Frict Mater 4(5):461–486

    Article  Google Scholar 

  21. Herle I, Kolymbas D (2004) Hypoplasticity for soils with low friction angles. Comput Geotech 31:365–373

    Article  Google Scholar 

  22. Knabe W, Przewłócki J, Różyński G (1998) Spatial averages for linear elements for two-parameter random field. Probab Eng Mech 13(3):147–167

    Article  Google Scholar 

  23. Kolymbas D (1977) A rate-dependent constitutive equation for soils. Mech Res Commun 6:367–372

    Article  Google Scholar 

  24. Kolymbas D (1987) A novel constitutive law for soils. In: Proceedings of second international conference on constitutive laws for engineering materials, vol 1. Elsevier, Amsterdam, pp 319–326

  25. Lade PV (1977) Elasto-plastic stress–strain theory for cohesionless soil with curved yield surfaces. Int J Solid Struct 13:1019–1035

    Article  MATH  Google Scholar 

  26. Lade PV (2002) Instability, shear banding and failure in granular materials. Int Solids Struct 39:3337–3357

    Article  Google Scholar 

  27. Leśniewska D, Mróz Z (2003) Shear bands in soil deformation processes. In: Labuz J, Drescher A (eds) Bifurcations and Instabilities in Geomechanics. Swets and Zeitlinger, pp 109–119

  28. Maier T (2002) Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizität. Ph.D. thesis, University of Dortmund

  29. Mandel J (1966) Conditions de stabilite et postulat de Drucker. Proceedings IUTAM Symposium Rheology and Soil Mechanics. Springer, Berlin, pp 58–68

    Google Scholar 

  30. Masin D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29:311–336

    Article  MATH  Google Scholar 

  31. Mühlhaus H-B (1989) Application of Cosserat theory in numerical solutions of limit load problems. Ing Arch 59:124–137

    Article  Google Scholar 

  32. Mühlhaus H-B (1990) Continuum models for layered and blocky rock. In: Hudson JA, Fairhurst Ch (eds) Comprehensive rock engineering, vol 2. Pergamon Press, New York, pp 209–231

  33. Niemunis A (2003) Extended hypoplastic models for soils. Habilitation monography, Gdansk University of Technology

  34. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohes Frict Mater 2:279–299

    Article  Google Scholar 

  35. Nübel K, Huang W (2004) A study of localized deformation pattern in granular media. Comput Methods Appl Mech Eng 193:2719–2743

    Article  MATH  Google Scholar 

  36. Oda M (1993) Micro-fabric and couple stress in shear bands of granular materials. In: Thornton C (ed) Powders and grains. Balkema, Rotterdam, pp 161–167

    Google Scholar 

  37. Oda M, Kazama H (1998) Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48:465–481

    Article  Google Scholar 

  38. Ord A, Hobbs B, Regenauer-Lieb K (2007) Shear band emergence in granular materials—a numerical study. Int J Numer Anal Methods Geomech 31:373–393

    Article  Google Scholar 

  39. Pasternak E, Mühlhaus H-B (2001) Cosserat continuum modelling of granulate materials. In: Valliappan S, Khalili N (eds) Computational mechanics—new frontiers for new millennium. Elsevier, Amsterdam, pp 1189–1194

  40. Pena AA, García-Rojo R, Herrmann HJ (2007) Influence of particle shape on sheared dense granular media. Granul Matter 3–4:279–292

    Google Scholar 

  41. Pestana JM, Whittle AJ (1999) Formulation of a unified constitutive model for clays and sands. Int J Numer Anal Methods Geomech 23:1215–1243

    Article  MATH  Google Scholar 

  42. Rechenmacher AL (2006) Grain-scale processes governing shear band initiation and evolution in sands. J Mech Phys Solids 54:22–45

    Article  MATH  Google Scholar 

  43. Regueiro RA, Borja RI (2001) Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity. Int J Solids Struct 38(21):3647–3672

    Article  MATH  Google Scholar 

  44. Rudnicki JW, Rice JR (1975) Conditions of the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23:371–394

    Article  Google Scholar 

  45. Schäfer H (1962) Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums. Miszellaneen der Angewandten Mechanik, Festschrift Tolmien. Akademie, Berlin

  46. Shahinpoor M (1980) Statistical mechanical considerations on the random packing of granular materials. Powder Technol 25:163–176

    Article  Google Scholar 

  47. Siefert Y, Al-Holo A, Chambon (2009) Loss of uniqueness of solutions of the borehole problem modeled with enhanced media. Int J Solids Struct. doi:10.1016/j.ijsolstr.2009.04.014

  48. Sluys L (1992) Wave propagation, localisation and dispersion in softening solids. Ph.D. thesis, Delft University of Technology

  49. Tatsuoka F, Nakamura S, Huang CC, Tani K (1990) Strength anisotropy and shear band direction in plane strain test of sand. Soils Found 30(1):35–54

    Google Scholar 

  50. Tatsuoka F, Okahara M, Tanaka T, Tani K, Morimoto T, Siddiquee MS (1991) Progressive failure and particle size effect in bearing capacity of footing on sand. Proc ASCE Geotech Eng Congress 27(2):788–802

    Google Scholar 

  51. Tatsuoka F, Siddiquee MS, Yoshida T, Park CS, Kamegai Y, Goto T, Kohata SY (1994) Testing methods and results of element tests and testing conditions of plane strain model bearing capacity tests using air-dried dense Silver Buzzard Sand. Internal Report of University of Tokyo, pp 1–129

  52. Tejchman J (1989) Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Publication series of the Institute of Soil and Rock Mechanics, University Karlsruhe, p 117

  53. Tejchman J (1997) Shear localization and autogeneous dynamic effects in granular bodies, vol 140. Publication series of the Institute for Rock and Soil Mechanics, Karlsruhe University, pp 1–353

  54. Tejchman J (2004) Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Comput Geotech 31(8):595–611

    Article  Google Scholar 

  55. Tejchman J (2008) FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu W, Borja R (eds) Springer series in geomechanics and geoengineering. Springer, Berlin

  56. Tejchman J, Bauer E (1996) Numerical simulation of shear band formation with a polar hypoplastic model. Comput Geotech 19(3):221–244

    Article  Google Scholar 

  57. Tejchman J, Górski J (2008) Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression. Int J Solids Struct 45(6):1546–1569

    Article  MATH  Google Scholar 

  58. Tejchman J, Górski J (2008) Deterministic and statistical size effect during shearing of granular layer within a micro-polar hypoplasticity. Int J Numer Anal Methods Geomech 32(1):81–107

    Article  Google Scholar 

  59. Tejchman J, Górski J (2009) Modeling of bearing capacity of footings on sand within stochastic micro-polar hypoplasticity. J Numer Anal Methods Geomech (accepted)

  60. Tejchman J, Gudehus G (2001) Shearing of a narrow granular strip with polar quantities. J Numer Anal Methods Geomech 25:1–18

    Article  MATH  Google Scholar 

  61. Tejchman J, Niemunis A (2006) FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material. Granul Matter 8(3–4):205–220

    Article  Google Scholar 

  62. Tejchman J, Wu W (1993) Numerical study on shear band patterning in a Cosserat continuum. Acta Mech 99:61–74

    Article  MATH  Google Scholar 

  63. Tejchman J, Wu W (1995) Experimental and numerical study of sand–steel interfaces. Int J Numer Anal Methods Geomech 19(8):513–537

    Article  Google Scholar 

  64. Tejchman J, Wu W (2007) Modeling of textural anisotropy in granular bodies within stochastic micro-polar hypoplasticity. Int J Non-Linear Mech 42:882–894

    Article  Google Scholar 

  65. Tejchman J, Wu W (2009) Non-coaxiality and stress-dilatancy rule in granular materials: FE-investigation within micro-polar hypoplasticity. Int J Numer Anal Methods Geomech 33(1):117–142

    Google Scholar 

  66. Tejchman J, Wu W (2009) FE-investigations of shear localization in granular bodies under high shear rate. Granul Matter 11(2):115–128

    Article  MATH  Google Scholar 

  67. Tejchman J, Herle I, Wehr J (1999) FE-studies on the influence of initial density, pressure level and mean grain diameter on shear localisation. Int J Numer Anal Methods Geomech 23(15):2045–2074

    Article  MATH  Google Scholar 

  68. Tejchman J, Bauer E, Wu W (2007) Effect of texturial anisotropy on shear localization in sand during plane strain compression. Acta Mech 1–4:23–51

    Article  Google Scholar 

  69. Uesugi M, Kishida H, Tsubakihara Y (1988) Behaviour of sand particles in sand–steel friction. Soils Found 28(1):107–118

    Google Scholar 

  70. Vanmarcke E-H (1983) Random fields: analysis and synthesis. MIT Press, Cambridge

    Google Scholar 

  71. Vardoulakis I (1980) Shear band inclination and shear modulus in biaxial tests. Int J Num Anal Methods Geomech 4:103–119

    Article  MATH  Google Scholar 

  72. Vardoulakis I, Goldschneider M, Gudehus G (1995) Formation of shear bands in sand bodies as a bifurcation problem. Int J Numer Anal Methods Geomech 2:99–128

    Article  Google Scholar 

  73. Vermeer P (1982) A five-constant model unifying well-established concepts. In: Gudehus G, Darve F, Vardoulakis I (eds) Proceedings of international workshop on constitutive relations for soils, Balkema, pp 175–197

  74. von Wolffersdorff P (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohes Frict Mater 1:251–271

    Article  Google Scholar 

  75. Walukiewicz H, Bielewicz E, Górski J (1997) Simulation of nonhomogeneous random fields for structural applications. Comput Struct 64(1–4):491–498

    Article  MATH  Google Scholar 

  76. Wang C (1970) A new representation theorem for isotropic functions. J Ration Mech Anal 36:166–223

    Article  MATH  Google Scholar 

  77. Weifner T, Kolymbas D (2007) A hypoplastic model for clay and sand. Acta Geotech 2:103–112

    Article  Google Scholar 

  78. Wu W, Bauer E (1993) A hypoplastic model for barotropy and pyknotropy of granular soils. In: Kolymbas D (ed) Modern approach to plasticity. Elsevier, Amsterdam, pp 225–245

  79. Yoshida T, Tatsuoka F, Siddiquee MS (1994) Shear banding in sands observed in plane strain compression. In: Chambon R, Desrues J, Vardoulakis I (eds) Localisation and bifurcation theory for soils and rocks. Balkema, Rotterdam, pp 165–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Tejchman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejchman, J., Górski, J. Finite element study of patterns of shear zones in granular bodies during plane strain compression. Acta Geotech. 5, 95–112 (2010). https://doi.org/10.1007/s11440-009-0103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-009-0103-6

Keywords

Navigation