Skip to main content
Log in

Modeling creep and rate effects in structured anisotropic soft clays

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In simulations of undrained triaxial tests, most soil models fail to capture the effect of post peak strain rate variation. This is due to the fact that no “swelling” is allowed for the viscoplastic volume strain. Imposing such restriction implies that dilative behavior cannot be modeled. Therefore, a model incorporating creep has been formulated using the so-called time resistance concept that uses a single creep parameter determined from an incremental oedometer test. The key feature of the proposed model is the introduction of the time resistance concept on the plastic multiplier rather than on the volumetric viscoplastic strain. This allows the viscoplastic volume strain to be either positive or negative depending on whether the state of the soil is on the “wet” or “dry” side of critical state line. The proposed model is based on an existing elastoplastic model for structured soft clay (S-CLAY1S). The paper gives a description of the constitutive model and the numerical scheme used in the implementation of the model. Capabilities of the model are illustrated with simulations of oedometer and triaxial tests. Results from such analyses show that the model is able to capture essential features of soft clay behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Anandarajah A, Dafailas YF (1986) Bounding surface plasticity III: application to anisotropic cohesive soils. J Eng Mech ASCE 112(12):1292–1328

    Article  Google Scholar 

  2. Banerjee PK, Yousif NB (1986) A plasticity model for the mechanical behavior of anisotropically consolidated clay. Int J Numer Anal Methods Geomech 10:521–541

    Article  Google Scholar 

  3. Bjerrum L (1967) Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Géotechnique 17(2):81–118

    Article  Google Scholar 

  4. Burland JB (1990) On the compressibility and shear strength of natural clays. Géotechnique 40(3):329–378

    Article  Google Scholar 

  5. Christensen S (1985) Creep tests in oedometer Eberg clay. The foundation for scientific and industrial research (SINTEF). Division of Geotechnical Engineering, Trondheim. Report No. STF69 F85005

  6. Crouch RS, Wolf JP (1992) A unfined 3-D anisotropic modular elliptic bounding-surface model for soil. 4th Int Conf Numer Models Geomech NUMOG IV:137–147

    Google Scholar 

  7. Dafalias YF (1986) Bounding surface plasticity I: mathematical foundation and hypoplasticity. J Eng Mech ASCE 112(9):966–987

    Article  Google Scholar 

  8. Dafalias YF (1986) An anisotropic critical state soil plasticity model. Mech Res Commun 13(6):341–347

    Article  MATH  Google Scholar 

  9. Dafalias YF (1987) An anisotropic critical state clay plasticity model. Proceedings 2nd International Conference Constitutional Laws Engineering Materials Arizona, Elsevier:513–521

  10. Dafalias YF, Manzari MT, Papadimitriou AG (2006) SANICLAY: simple anisotropic clay plasticity model. Int J Numer Anal Methods Geomech 30:1231–1257

    Article  Google Scholar 

  11. de Borst R, Heeres OM (2002) A unified approach to the implicit integration of standard, non-standard and viscous plasticity models. Int J Numer Anal Methods Geomech 26:1059–1070

    Article  MATH  Google Scholar 

  12. Gens A, Nova R (1993) Conceptual bases for a constitutive model for bonded soils and weak rocks. In: Anagstopoulos et al (eds) Geotech Eng of hard soils—soft rocks. Balkema, Rotterdam

    Google Scholar 

  13. Graham T, Houlsby GT (1983) Anisotropic elasticity of a natural clay. Géotechnique 33(2):165–180

    Article  Google Scholar 

  14. Grimstad G (2009) Development of effective stress based anisotropic models for soft clays. PhD Dissertation, Norwegian University of Science and Technology (NTNU)

  15. Grimstad G, Degago SA, Nordal S, Karstunen M (2008) Modelling creep and rate effects using the time resistance concept in a model for anisotropy and destructuration. Nordic Geotech Meeting Sandefjord, Norway, pp 195–202

    Google Scholar 

  16. Janbu N (1963) Soil compressibility as determined by oedometer and triaxial tests. Proceeding 3rd European Conference Soil Mechanics Foundation Engineering Wiesbaden, Germany:19–25

  17. Janbu N (1969) The resistance concept applied to deformations of soils. Proceeding 7th International Conference Soil Mechanics Foundation Engineering Mexico city(1):191–196

  18. Janbu N (1985) Soil models in offshore Engineering. The twenty-fifth Rankine lecture. Géotechnique 35(3):241–282

    Article  Google Scholar 

  19. Karstunen M, Krenn H, Wheeler SJ, Koskinen M, Zentar R (2005) The effect of anisotropy and destructuration on the behavior of Murro test embankment. Int J GeoMech ASCE 5(2):87–97

    Article  Google Scholar 

  20. Kutta W (1901) Beitrag zur naherungsweisen Integration totater Differentialgleichungen Z. Math Pyhs 46:435–453

    Google Scholar 

  21. Leonards GA, Altschaeffl AG (1964) Compressibility of clays. J Soil Mech Found Div ASCE 90(5):133–155

    Google Scholar 

  22. Leoni M, Karstunen M, Vermeer PA (2008) Anisotropic creep model for soft soils. Géotechnique 58(3):215–226

    Article  Google Scholar 

  23. Leroueil S, Tavenas F, Bruey F, La Roehelle P, Roy M (1979) Behavior of destructured natural clays. J Geotech Eng Divi ASCE 105(6):759–778

    Google Scholar 

  24. Lerouels S, Kabbai M, Tavenas F, Bouchard R (1985) Stress-strain-strain rate relation for the compressibility of sensitive natural clays. Géotechnique 35(2):159–180

    Article  Google Scholar 

  25. Leroueil S, Magnan JP, Tavenas F (1990) Embankments on soft clays. Ellis Horwood series in civil engineering-geotechnics section. Ellis Horwood Ltd, England

    Google Scholar 

  26. Liang RY, Ma F (1992) Anisotropic plasticity model for undrained cyclic behavior of clays I: theory. J Geotech Eng ASCE 118(2):229–245

    Article  Google Scholar 

  27. Liingaard M, Augustesen A, Lade PV (2004) Characterization of models for time-dependent behavior of soils. Int J Geomech 4(3):157–177

    Article  Google Scholar 

  28. Ling HI, Dongyi Y, Kaliakin VN, Themelis NJ (2002) Anisotropic elastoplastic bounding surface model for cohesive soils. J Eng Mech 128(7):748–758

    Article  Google Scholar 

  29. Länsivaara T (1995) A critical state model for anisotropic soft soils. Proceedings 11th European Conference Soil Mechanics Foundation Engineering Copenhagen, Denmark (6):101–106

  30. Länsivaara T (1999) A study of the mechanical behavior of soft clay. PhD Dissertation, Norwegian University of Science and Technology (NTNU)

  31. Mesri G, Castro A (1987) Ca/Cc concept and K0 during secondary compression. J Geotech Eng Divi ASCE 113(3):230–247

    Article  Google Scholar 

  32. Mitchell JK, Soga K (2005) Fundamentals of soil behavior, 3rd edn. Wiley, New York

    Google Scholar 

  33. Needleman A (1988) Material rate dependence and mesh sensitivity in localization problems. Comput Methods Appl Mech Eng 67:69–85

    Article  MATH  Google Scholar 

  34. Pestana JM, Whittle AJ (1999) Formulation of a unified constitutive model for clays and sands. Int J Numer Anal Methods Geomech 23:1215–1243

    Article  MATH  Google Scholar 

  35. Pietruszczak ST, Krucinski S (1989) Consideration on soil response to the rotation of principal stress directions. Comput Geotech 8:89–110

    Article  Google Scholar 

  36. Pietruszczak ST, Mroz Z (1981) Finite element analysis of deformation of strain-softening materials. Int J Numer Meth Eng 17:327–334

    Article  MATH  Google Scholar 

  37. Roscoe KH, Burland JB (1968) On the generalized stress-strain behavior of wet clay. In: Engineering plasticity, Hetman Leckie, Cambridge, pp. 535–609

  38. Runge C (1895) Uber die numerische Auflosung von Differentialgleichungen. Math Ann 46:167–178

    Article  MathSciNet  Google Scholar 

  39. Schanz T, Veermer PA, Bonnier PG (1999) The hardening soil model: formulation and verification. Beyond 2000 in computational Geotechnics—10 years of PLAXIS Balkema, Rotterdam ISBN 90 5809 040

  40. Schofield AN, Wroth CP (1968) Critical state soil mechanics. McGraw-Hill, London

    Google Scholar 

  41. Sekiguchi H, Ohta H (1977) Induced anisotropy and time dependency in clays. Proceedings 9th International Conference Soil Mechanics Foundation Engineering Tokyo, Japan:229–238

  42. Stolle DFE, Vermeer PA, Bonnier PG (1999) A consolidation model for a creeping clay. Can Geotech J 36:754–759

    Article  Google Scholar 

  43. Stolle DFE, Vermeer PA, Bonnier PG (1999) Time integration of a constitutive law for soft clays. Commun Numer Methods Eng 15:603–609

    Article  MATH  Google Scholar 

  44. Šuklje L (1957) The analysis of the consolidation process by the isotaches method. Proceedings 4th International Conference Soil Mechanics Foundation Engineering London 1:200-206

  45. Svanø G, Emdal A (1986) KRYKON Ver02 a FEM program for 1D consolidation analyses including creep effects. Div Geotech Eng SINTEF Trondheim, Norway

    Google Scholar 

  46. Thakur V (2007) Strain localization in sensitive soft clays. PhD Dissertation, Norwegian University of Science and Technology (NTNU)

  47. Wang WM, Sluys LJ, de Borst R (1996) Interaction between material length scale and imperfection size for localization phenomena in viscoplastic media. Eur J Mech A/Solids 15(3):447–464

    MATH  Google Scholar 

  48. Wang WM, Sluys LJ, de Borst R (1997) Viscoplasticity for instabilities due to strain softening and strain rate softening. Int J Numr Methods Eng 40:3839–3864

    Article  MATH  Google Scholar 

  49. Wheeler SJ, Näätänen A, Karstunen M, Lojander M (1999) Anisotropic hardening model for normally consolidated soft clay. Proceedings 7th International Symposium Numerical Models Geomechanics (NUMOG) Graz, Austria Balkema, Rotterdam:33-40

  50. Wheeler SJ, Näätänen A, Karstunen M, Lojander M (2003) An anisotropic elastoplastic model for natural soft clays. Can Geotech J 40:403–418

    Article  Google Scholar 

  51. Whittle AJ (1993) Evaluation of a constitutive model for overconsolidated clays. Géotechnique 43(2):289–313

    Article  Google Scholar 

  52. Yin JH, Graham J (1999) Elastic viscoplastic modelling of the time-dependent stress–strain behavior of soils. Can Geotech J 36:736–745

    Article  Google Scholar 

  53. Yin ZY, Chang CS, Karstunen M, Hicher PY (2010) An anisotropic elastic viscoplastic model for soft clays. Int J Solids Struct 47(5):665–677

    Article  Google Scholar 

  54. Zdravkovic L, Potts DM, Hight DW (2002) The effect of strength anisotropy on the behavior of embankments on soft ground. Géotechnique 52(6):447–457

    Google Scholar 

Download references

Acknowledgments

The work presented was carried out as a part of a Marie Curie Research Training Network “Advanced Modeling of Ground Improvement on Soft Soils (AMGISS)” (Contract No MRTN-CT-2004-512120)” and Marie Curie Industry-Academia Partnerships and Pathways project on “Modelling Installation Effects in Geotechnical Engineering (GEO-INSTALL)” (PIAP-GA-2009-230638) supported by the European Community. The work described in this paper is also partially supported by the Research Council of Norway through the International Centre for Geohazards (ICG). Their support is gratefully acknowledged. This is ICG contribution No. 293. Academy of Finland (Grant 1284594) is acknowledged. SINTEF and NGI are also acknowledged for providing laboratory data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson Abate Degago.

Appendix

Appendix

From the parameters used as user input, some internal parameters are determined for the model. The internal parameters of the S-CLAY1S model are calculated through input of the remolded reference Young’s modulus and the remolded reference oedometer modulus, as well as \( K_{0}^{NC} \). Approximations for the internal parameters, as used in Wheeler et al. [50], are found by assuming that the elastic stiffness is infinite. In oedometer condition it may be shown that the following relation holds:

$$ \left[ {\begin{array}{*{20}c} 1 \\ {{\frac{2}{3}}} \\ \end{array} } \right] \cdot {\frac{{p_{ref} }}{{\left\{ {E_{oed}^{ref} } \right\}_{i} }}} - \left[ {\begin{array}{*{20}c} {F_{K} } & {F_{J} } \\ {F_{J} } & {F_{G} } \\ \end{array} } \right] \cdot {\frac{{p_{ref} }}{{\left\{ {E_{ref} } \right\}_{i} }}} \cdot \left[ {\begin{array}{*{20}c} 1 \\ {\eta_{K0NC} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 1 \\ {{\frac{{2\left( {\eta_{K0NC} - \alpha_{K0NC} } \right)}}{{M_{f}^{2} - \eta_{K0NC}^{2} }}}} \\ \end{array} } \right] \cdot \zeta_{i} $$
(21)

The term F J is introduced in case of elastic anisotropy is assumed.

From Eq. (21), we find the two following equations:

$$ \zeta_{i} = p_{ref} \left( {{\frac{1}{{\left\{ {E_{oed}^{ref} } \right\}_{i} }}} - {\frac{{F_{K} + F_{J} \cdot \eta_{K0NC} }}{{\left\{ {E_{ref} } \right\}_{i} }}}} \right) $$
(22)
$$ \alpha_{K0NC} = \eta_{K0NC} - {\frac{{p_{ref} }}{{\zeta_{i} }}}\left( {{\frac{2}{3}} \cdot {\frac{1}{{\left\{ {E_{oed}^{ref} } \right\}_{i} }}} - {\frac{{F_{J} + F_{G} \cdot \eta_{K0NC} }}{{\left\{ {E_{ref} } \right\}_{i} }}}} \right) \cdot {\frac{{M_{f}^{2} - \eta_{K0NC}^{2} }}{2}} $$
$$ \alpha_{K0NC} \approx \eta_{K0NC} - {\frac{{M_{f}^{2} - \eta_{K0NC}^{2} }}{3}}. $$
(23)

In addition, Eq. (12) combined with the value for \( K_{0}^{NC} \) gives a ratio between μ q and μ v that must be given to make Eq. (23) true.

$$ \begin{aligned} {\frac{{\mu _{q} }}{{\mu _{v} }}} = & {\frac{{\left( {{\frac{3}{4}} \cdot \eta _{{K0NC}} - \alpha _{{K0NC}} } \right) \cdot \left( {M_{f}^{2} - \eta _{{K0NC}}^{2} } \right)}}{{\left( {\alpha _{{K0NC}} - {\frac{1}{3}} \cdot \eta _{{K0NC}} } \right) \cdot 2\left( {\eta _{{K0NC}} - \alpha _{{K0NC}} } \right)}}} \\ & \approx {\frac{{{\frac{9}{2}}\left( {{\frac{{M_{f}^{2} - \eta _{{K0NC}}^{2} }}{3}} - {\frac{1}{4}} \cdot \eta _{{K0NC}} } \right)}}{{2\eta _{{K0NC}} - M_{f}^{2} + \eta _{{K0NC}}^{2} }}} \\ \end{aligned} . $$
(24)

Leoni et al. [22] proposes the following expression for μ v : From Eq. (12) and considering q = 0, we obtain:

$$ {\frac{{M_{f}^{2} }}{{M_{f}^{2} \cdot \alpha - 2\alpha^{2} \cdot {{{\mu_{q} }}/{{\mu_{v} }}}}}} \cdot d\alpha = - \mu_{v} \cdot d\varepsilon_{v}^{vp} $$
(25)

by integration, we find:

$$ \int\limits_{{\alpha_{K0NC} }}^{{{{\alpha_{K0NC} } \mathord{\left/ {\vphantom {{\alpha_{K0NC} } {\eta_{i} }}} \right. \kern-\nulldelimiterspace} {\eta_{i} }}}} {{\frac{1}{{\alpha - {{{2\alpha^{2} }}/{{M_{f}^{2} }}} \cdot {{{\mu_{q} }}/{{\mu_{v} }}}}}}} \cdot d\alpha = - \mu_{v} \cdot \zeta \cdot \int\limits_{{p^{\prime } }}^{{n_{2} \cdot p^{\prime } }} {{\frac{1}{{p^{\prime } }}}} \cdot dp^{\prime } $$
$$ \mu_{v} = {\frac{1}{{\zeta \cdot \ln \left( {n_{2} } \right)}}} \cdot \ln \left( {{\frac{{n_{1} \cdot M_{f}^{2} - 2 \cdot {{{\mu_{q} }}/{{\mu_{v} }}} \cdot \alpha_{K0NC} }}{{M_{f}^{2} - 2 \cdot {{{\mu_{q} }}/{{\mu_{v} }}} \cdot \alpha_{K0NC} }}}} \right) $$
(26)

for n 1 = 10 and \( n_{2} = \exp \left( {{{{p_{ref} }}/{{\zeta \cdot \left\{ {E_{oed}^{ref} } \right\}_{i} }}}} \right) \).

$$ \mu_{v} = {\frac{{\left\{ {E_{oed}^{ref} } \right\}_{i} }}{{p_{ref} }}} \cdot \ln\left( {{\frac{{10 \cdot M_{f}^{2} - 2 \cdot {{{\mu_{q} }}/{{\mu_{v} }}} \cdot \alpha_{K0NC} }}{{M_{f}^{2} - 2 \cdot {{{\mu_{q} }}/{{\mu_{v} }}} \cdot \alpha_{K0NC} }}}} \right) $$
(27)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimstad, G., Degago, S.A., Nordal, S. et al. Modeling creep and rate effects in structured anisotropic soft clays. Acta Geotech. 5, 69–81 (2010). https://doi.org/10.1007/s11440-010-0119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-010-0119-y

Keywords

Navigation