Skip to main content
Log in

Critical length of force chains and shear band thickness in dense granular materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper investigates the existence of the critical force chain length and the buckling of unconfined grain columns in dense granular materials. Tests on assemblies of flat pentagon photoelastic particles were first carried out to demonstrate the maximum length of force chains. Then, the theoretical buckling analysis and distinct element method (DEM) simulations for grain columns composed of mono-sized elliptical particles were performed. The results revealed the existence of critical column length, which is generally affected by the particle shapes, the rotational resistance at particle contact points and the end constraints to the grain columns. The interparticle friction does not have explicit effect on the critical force chain length, but it has significant influence on the grain column’s curvature when collapse takes place. The thickness of shear band in granular soils can be determined as the critical length of grain columns by appropriately imposing the constraints on the boundaries, as confirmed by DEM simulations and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aharonov E, Sparks DW (2002) Shear profiles in granular layers. Phys Rev E65 051302:1–12

    Google Scholar 

  2. Alonso-Marroquin F, Vardoulakis I (2005) Micromechanics of shear bands in granular media. In: Garcia-Rojo R, Herrmann HJ, MacNamara S (eds), Powders and grains 2005, pp 701–704

  3. Alshibli KA, Hasan A (2008) Spatial variation of void ratio and shear band thickness in sand using X-ray computed tomography. Géotechnique 58(4):249–257

    Article  Google Scholar 

  4. Bardet JP, Huang Q (1993) Rotational stiffness of cylindrical particle contacts. Proceeding on 2nd International Conference on Micromechanics of Granular Media, pp 39–43

  5. Bardet JP, Proubet J (1992) The structure of shear bands in idealized granular materials. Appl Mech Rev 3(2):118–122

    Article  Google Scholar 

  6. Bardet JP, Shiv A (1995) Plane-strain instability of saturated porous material. J Eng Mech 121(6):717–724

    Article  Google Scholar 

  7. Bauer E, Huang W, Wu W (2004) Investigations of shear banding in an anisotropic hypoplastic material. Int J Solids Struct 41:5903–5919

    Article  MATH  Google Scholar 

  8. Bazant Z, Lin F, Pijaudier-Cabot G (1987) Yield limit degradation: non-local continuum model with local strain. Proceeding of International Conference on Computational Plasticity, Barcelona, pp 1757–1780

  9. Behringer RP, Daniels KE, Majmudar TS, Sperl M (2008) Fluctuations, correlations and transitions in granular materials: statistical mechanics for a non-conventional system. Philos Trans R Soc A 366:493–504

    Article  MathSciNet  MATH  Google Scholar 

  10. Cates ME, Wittmer JP, Bouchaud J-P, Claudin P (1999) Jamming and static stress transmission in granular materials. Chaos 9(3):511–522

    Article  MATH  Google Scholar 

  11. Chambon R, Crochepeyre S, Desrues J (2000) Localization criteria for non linear constitutive equations of geomaterials. Mech Cohes-Frict Mater 5:561–582

    Article  Google Scholar 

  12. Cho G-C, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands. J Geotech Geoenviron Eng 132(5):591–602

    Article  Google Scholar 

  13. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65

    Article  Google Scholar 

  14. de Borst R (1991) Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng Comput 8:317–332

    Article  Google Scholar 

  15. de Borst R, Mühlhaus H-B (1992) Gradient dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng 35:521–539

    Article  MATH  Google Scholar 

  16. Desrues J, Chambon R (1989) Shear band analysis for granular materials—the question of incremental non-linearity. Ingenieur Arch 59:187–196

    Article  Google Scholar 

  17. Desrues J, Viggiani G (2004) Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int J Numer Anal Methods Geomech 28:279–321

    Article  Google Scholar 

  18. Finno R, Harris W, Mooney M, Viggiani G (1997) Shear bands in plane strain compression of loose sand. Géotechnique 47(1):149–165

    Article  Google Scholar 

  19. Gardiner BS, Tordesillas A (2004) Micromechanics of shear bands. Int J Solids Struct 41:5885–5901

    Article  MATH  Google Scholar 

  20. Gudehus G, Nübel K (2004) Evolution of shear bands in sand. Géotechnique 54(3):187–201

    Article  Google Scholar 

  21. Guo P, Su X (2007) Effect of dilatancy on instability, pre-instability strain softening of sand along proportional strain paths. Soils Found 47(4):757–770

    Article  Google Scholar 

  22. Hamadi K, Razavi AM-F, Darve F (2008) Bifurcation and instability modelling by a multimechanism elasto-plastic model. Int J Numer Anal Methods Geomech 32:461–492

    Article  Google Scholar 

  23. Harr ME (1977) Mechanics of Particulate Media: a Probabilistic approach. McGraw-Hill, New York

    Google Scholar 

  24. Howell D, Behringer RP, Veje C (1999) Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Phys Rev Lett 82:5241–5244

    Article  Google Scholar 

  25. Huang W, Nübel K, Bauer E (2002) A polar extension of hypoplastic model for granular material with shear localization. Mech Mater 34:563–576

    Article  Google Scholar 

  26. Hunt GW, Tordesillas A, Green SC, Shi J (2010) Force-chain buckling in granular media: a structural mechanics perspective. Philos Trans R Soc A 368:249–262

    Article  MATH  Google Scholar 

  27. Imposimato S, Nova R (1998) An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sand. Mech Cohes-Frict Mater 3:65–87

    Article  Google Scholar 

  28. Itasca (2006) PFC2D Manual. Itasca Consulting Group Inc, Minneapolis

    Google Scholar 

  29. Iwashita K, Oda M (1998) Rolling resistance at contacts in the simulation of shear band development by DEM. J Eng Mech 124(3):285–292

    Article  Google Scholar 

  30. Kuhl E, Ramm E (2000) Simulation of strain localization with gradient enhanced damage models. Comp Mater Sci 16:176–185

    Article  Google Scholar 

  31. Loret B, Prevost JH (1990) Dynamic strain localisation in elasto-viscoplastic solids, Part 1. General formulation and 1D examples. Comp Appl Mech Eng 83:247–273

    Article  MATH  Google Scholar 

  32. Marcher T, Vermeer PA (2001) Macromodelling of softening in non-cohesive soils. In: Vermeer PA, Diebels S, Ehlers W, Herrmann HJ, Luding S, Ramm E (eds) Continuous and discontinuous modelling of cohesive frictional materials. Lecture series in physics, vol 568, Springer, Berlin, pp 89–110

  33. Mahmood Z, Iwashita K (2010) A simulation study of microstructure evolution inside the shear band in biaxial compression test. Int J Numer Anal Methods Geomech. Published online in Wiley InterScience (www.interscience.wiley.com). doi:10.1002/nag.917

  34. Majmudar TS, Behringer RP (2005) Contact force measurements and stress induced anisotropy in granular materials. Nature 435(23):1079–1082

    Article  Google Scholar 

  35. Masson S, Martinez J (2001) Micromechanical analysis of the shear behaviour of a granular material. J Eng Mech 127(10):1007–1016

    Article  Google Scholar 

  36. Mitchell JK, Soga K (2005) Fundamentals of soil behaviour, 3rd edn. Wiley, New Jersey

    Google Scholar 

  37. Mokni M, Desrues J (1999) Strain localisation measurements in undrained plane-strain biaxial tests on Hostun RF sand. Mech Cohes-Frict Mater 4(4):419–441

    Article  Google Scholar 

  38. Muhlhaus HB, Vardoulakis I (1987) The thickness of shear bands in granular materials. Géotechnique 37(3):271–283

    Article  Google Scholar 

  39. Muthuswamy M, Peters J, Tordesillas A (2006) Uncovering the secretes to relieving stress: discrete element analysis of force chains in particular media. ANZIAM J 47:C355–C372

    Google Scholar 

  40. Ni Q, Powrie W, Zhang X, Harkness R (2000) Effect of particle properties on soil behaviour: 3-D numerical modelling of shear box tests. ASCE Geotech Special Publ 96:58–70

    Google Scholar 

  41. Oda M (1993) Micro-fabric and couple stress in shear bands of granular materials. In: Thornton C (ed) Powders and grains. Proceedings of Second International Conference on Micromechanics of Granular Media, Birmingham, Balkema, Rotterdam, Netherlands, pp 161–166

  42. Oda M, Kazama H (1998) Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géotechnique 48(4):465–481

    Article  Google Scholar 

  43. Oda M, Iwashita K (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109:192–205

    Article  Google Scholar 

  44. Oda M, Kazama H, Konish J (1998) Effects of induced anisotropy on the development of shear bands in granular materials. Mech Mater 28(1–4):103–111

    Article  Google Scholar 

  45. Oda M, Iwashita K (2000) Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int J Eng Sci 38(15):1713–1740

    Article  Google Scholar 

  46. Peters JF, Muthuswamy M, Wibowo J, Tordesillas A (2005) Characterization of force chains in granular material. Phys Rev E 72:0413071–0413078

    Article  Google Scholar 

  47. Pradhan TBS (1997) Characteristics of shear band in plane strain compression tests of sands. In: Asaoka A, Adachi T, Oka F (eds), Deformation and progressive failure in geomechanics. Proceedings of IS-NAGOYA’97, Pergamon, pp 241–246

  48. Radjai F, Wolf DE, Jean M, Moreau JJ (1998) Bimodal character of stress transmission in granular packings. Phys Rev Lett 80(1):61–64

    Article  Google Scholar 

  49. Radjai F (2008). Particle-scale origins of shear strength in granular media. arXiv:0801.4722v1 [cond-mat.soft]

  50. Rice JR (1975) On the stability of dilatant hardening of saturated rock mass. J Geophys Res 80:1531–1536

    Article  Google Scholar 

  51. Rudnicki JW (2000) Diffusive instabilities in dilating and compacting geomaterials. In: Chuang T-J, Rudnicki JW (eds) Multiscale deformation and fracture in materials and structures. Kluwer, The Netherlands, pp 159–182

    Google Scholar 

  52. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure sensitive dilatant materials. J Mech Phys Solids 23:371–394

    Article  Google Scholar 

  53. Sadrekarimi A, Olson SM (2010) Shear band formation observed in ring shear tests on sandy soils. J Geotech Geoenviron Eng 136(2):366–375

    Article  Google Scholar 

  54. Satake M (1998) Finite difference approach to the shear band formation from the viewpoint of particle column buckling. In: Proceedings of 13th Southeast Asian Geotechical Conference, pp 815–818

  55. Tejchman J (2004) Influence of a characteristic length on shear zone thickness in hypoplasticity with different enhancements. Comput Geotech 31(8):595–611

    Article  Google Scholar 

  56. Tejchman J, Niemunis A (2006) FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material. Granular Matter 8:205–220

    Article  MATH  Google Scholar 

  57. Tejchman J, Bauer E, Wu W (2007) Effect of fabric anisotropy on shear localization in sand during plane strain compression. Acta Mech 189:23–51

    Article  MATH  Google Scholar 

  58. Tejchman J, Wu W (1993) Numerical study on shear band patterning in a Cosserat continuum. Acta Mech 99:61–74

    Article  MATH  Google Scholar 

  59. Tordesillas A, Hunt A, Shi J (2011) A characteristic length scale in confined elastic buckling of a force chain. Granular Matter 13:215–218

    Article  Google Scholar 

  60. Tordesillas A, Lin Q, Zhang J, Behringer RP, Shi J (2011) Structural stability and jamming of self-organized cluster conformations in dense granular materials. J Mech Phys Solids 59:265–296

    Article  Google Scholar 

  61. Tordesillas A, Muthuswamy M (2009) On the modeling of confined buckling of force chains. J Mech Phys Solids 57(4):706–727

    Article  MathSciNet  MATH  Google Scholar 

  62. Tordesillas A, Muthuswamy M, Walsh SDC (2008) Mesoscale measures of nonaffine deformation in dense granular assemblies. J Eng Mech 134(12):1095–1113

    Article  Google Scholar 

  63. Tordesillas A, Walker DM, Lin Q (2010) Force cycles and force chains. Phys Rev E 81:0113021–0113029

    Article  Google Scholar 

  64. Tordesillas A, Zhang J, Behringer R (2009) Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech Geoeng 4(1):3–16

    Article  Google Scholar 

  65. Vardoulakis I, Georgopoulos IO (2005) The “stress-dilatancy” hypothesis revisited: shear-banding related instabilities. Soils Found 45(2):61–76

    Google Scholar 

  66. Vardoulakis I, Graf B (1985) Calibration of constitutive models for granular materials using data from biaxial experiments. Géotechnique 35(3):299–317

    Article  Google Scholar 

  67. Vardoulakis I, Sulem J (1995) Bifurcation analysis in geomechanics. Chapman & Hall, London

    Google Scholar 

  68. Viggiani G, Kuntz M, Desrues J (2001) An experimental investigation of the relationships between grain size distribution and shear banding in sand. In: Vermeer PA, Diebels S, Ehlers W, Hermann HJ, Luding S, Ramm E (eds) Continuous and discontinuous modeling of cohesive-frictional materials. Lecture Notes in Physics vol 568. Springer, New York, pp 111–127

    Chapter  Google Scholar 

  69. Wan RG, Guo P, Al-Mamun M (2005) Behaviour of granular materials in relation to their fabric dependence. Soils Found 45(2):77–86

    Google Scholar 

  70. Yoshida T, Tatsuoka F, Siddiquee MSA, Kamegai Y, Park C-S (1994) Shear banding in sands observed in plane strain compression. In: Chambon R, Desrues J, Vardouylakis I (eds) Localization and bifurcation theory for soils and rocks. A.A. Balkema, Rotterdam, pp 165–179

    Google Scholar 

  71. Zhang HW, Schrefler BA (2000) Gradient dependent plasticity model and dynamic strain localisation analysis of saturated and partially saturated porous media: 1D model. Eur J Mech A/Solids 19:503–524

    Article  Google Scholar 

  72. Zhang L, Thornton C (2007) A numerical examination of the direct shear test. Géotechnique 57(4):343–354

    Article  Google Scholar 

  73. Zbib HM, Aifantis EC (1988) On the localization and post localisation behaviour of plastic deformation. Res Mechanica Int J Strut Mech Mater Sci 23:261–277

    Google Scholar 

Download references

Acknowledgments

The author acknowledges financial support by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, P. Critical length of force chains and shear band thickness in dense granular materials. Acta Geotech. 7, 41–55 (2012). https://doi.org/10.1007/s11440-011-0154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-011-0154-3

Keywords

Navigation