Skip to main content
Log in

A simple critical-state-based double-yield-surface model for clay behavior under complex loading

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The critical state concept has been widely used in soil mechanics. The purpose of this study is to apply this concept in the framework of multi-mechanism elastoplasticity. The developed model has two yield surfaces: one for shear sliding and one for compression. In this model, the location of the critical state line is explicitly considered and related to the actual material density to control the peak strength and the phase transformation characteristics. The stress reversal technique is incorporated into the model for describing clay behavior under complex loading including changes of stress direction. The determination of the model parameters is discussed; it requires only one drained or undrained triaxial test up to failure with an initial isotropic consolidation stage. The model is used to simulate drained and undrained tests under monotonic loading with different over-consolidation ratios on various remolded and natural clays, including true triaxial tests with different Lode’s angles. Drained and undrained tests under cyclic loadings are also simulated by using the set of parameters determined from monotonic tests. The comparison between experimental results and numerical simulations demonstrate a good predictive ability of this new simple model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Balendran B, Nemat-Nasser S (1993) Double sliding model for cyclic deformation of granular materials including dilatancy effects. J Mech Phys Solids 41(3):573–612

    Article  Google Scholar 

  2. Been K, Jefferies MG (1985) A state parameter for sands. Geotechnique 35(2):99–112

    Article  Google Scholar 

  3. Biarez J, Hicher PY (1994) Elementary mechanics of soil behaviour, Balkema

  4. Bryson LS, Salehian A (2011) Performance of constitutive models in predicting behavior of remolded clay. Acta Geotech 6:143–154

    Article  Google Scholar 

  5. Calladine CR (1971) Microstructural view of the mechanical properties of saturated clay. Geotechnique 21(4):391–415

    Article  Google Scholar 

  6. Chang CS, Yin Z-Y (2010) Modeling stress-dilatancy for sand under compression and extension loading conditions. ASCE J Eng Mech 136(6):777–786

    Article  Google Scholar 

  7. Chang CS, Yin Z-Y (2010) Micromechanical modelling for inherent anisotropy in granular materials. ASCE J Eng Mech 136(7):830–839

    Article  Google Scholar 

  8. Chowdhury EQ, Nakai T (1998) Consequence of the tij-concept and a new modelling approach. Comput Geotech 23(4):131–164

    Article  Google Scholar 

  9. Dafalias YF, Manzari MT, Papadimitriou AG (2006) SANICLAY: simple anisotropic clay plasticity model. Int J Numer Anal Methods Geomech 30(12):1231–1257

    Article  MATH  Google Scholar 

  10. Gajo A, Muir Wood D (1999) Severn–Trent sand: a kinematic-hardening constitutive model: the qp formulation. Geotechnique 49(5):595–614

    Article  Google Scholar 

  11. Gens A (1982) Stress–strain and strength of a low plasticity clay. Ph.D. Thesis at Imperial College, London University

  12. Hardin BO (1978) The nature of stress–strain behaviour of soils. In: Proceedings of the earthquake engineering and soil dynamics, vol 1, Pasadena, USA, pp 3–90

  13. Hirayama H (1987) Interpretation of the cam-clay model as a simplified double-yield-surface model. Soils Found 27(3):105–111

    Article  Google Scholar 

  14. Hsieh HS, Kavazanjian JE, Borja RI (1990) Double-yield-surface Cam-clay plasticity model. I: theory. J Geotech Eng 116(9):1381–1401

    Article  Google Scholar 

  15. Huang WX, Wu W, Sun DA, Scott S (2006) A simple hypoplastic model for normally consolidated clay. Acta Geotech 1:15–27

    Article  Google Scholar 

  16. Hujeux JC (1985) Une loi de comportement pour le chargement cyclique des sols. In: Davidovici V (ed) Génie Parasismique. Presses ENPC, France, pp 278–302

    Google Scholar 

  17. Jefferies MG (1993) NorSand: a simple critical state model for sand. Geotechnique 43(1):91–103

    Article  MathSciNet  Google Scholar 

  18. Ladd CC, Varallyay J (1965) The influence of the stress system on the behaviour of saturated clays during undrained shear. Research Rep. No. R65-11, Department of Civil Engineering, MIT, Cambridge, MA

  19. Lade PV (2007) Modeling failure in cross-anisotropic frictional materials. Int J Solids Struct 44(16):5146–5162

    Article  MATH  Google Scholar 

  20. Li T, Meissner H (2002) Two-surface plasticity model for cyclic undrained behavior of clays. ASCE J Geotech Geoenviron Eng 128(7):613–626

    Article  Google Scholar 

  21. Ling HI, Yue D, Kaliakin VN (2002) Anisotropic elastoplastic bounding surface model for cohesive soils. ASCE J Eng Mech 128(7):748–758

    Article  Google Scholar 

  22. Mašin D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29(4):311–336

    Article  MATH  Google Scholar 

  23. Nakai T, Hinokio M (2004) A simple elastoplastic model for normally and overconsolidated soils with unified material parameters. Soils Found 44(2):53–70

    Article  Google Scholar 

  24. Ohmaki S (1979) A mechanical model for the stress–strain behaviour of normally consolidated cohesive soil. Soils Found 19(3):29–44

    Article  Google Scholar 

  25. Pestana JM, Whittle AJ, Gens A (2002) Evaluation of a constitutive model for clays and sands: Part II—Clay behaviour. Int J Numer Anal Methods Geomech 26(11):1123–1146

    Article  MATH  Google Scholar 

  26. Roscoe KH, Burland JB (1968) On the generalized stress–strain behavior of ‘wet’ clay. Engineering Plasticity. Cambridge University Press, Cambridge, pp 553–609

    Google Scholar 

  27. Schofield AN, Wroth CP (1968) Critical state soil mechanics. Mcgraw Hill, Maidenhead

    Google Scholar 

  28. Schweiger H, Wiltafsky C, Scharinger F, Galavi V (2009) A multilaminate framework for modelling induced and inherent anisotropy of soils. Geotechnique 59(2):87–101

    Article  Google Scholar 

  29. Sheng D, Sloan SW, Yu HS (2000) Aspects of finite element implementation of critical state models. Comput Mech 26:185–196

    Article  MATH  Google Scholar 

  30. Stallebrass SE, Taylor RN (1997) The development and evaluation of a constitutive model for the prediction of ground movements in overconsolidated clay. Geotechnique 47(2):235–253

    Article  Google Scholar 

  31. Taiebat M, Dafalias YF (2008) SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 32(8):915–948

    Article  MATH  Google Scholar 

  32. Vermeer PA (1978) A double hardening model for sand. Geotechnique 28(4):414–433

    Google Scholar 

  33. Wheeler SJ, Näätänen A, Karstunen M, Lojander M (2003) An anisotropic elasto-plastic model for soft clays. Can Geotech J 40:403–418

    Article  Google Scholar 

  34. Whittle AJ, Kavvadas MJ (1994) Formulation of MIT-E3 constitutive model for overconsolidated clays. J Geotech Eng 120(1):173–198

    Article  Google Scholar 

  35. Yamakawa Y, Hashiguchi K, Ikeda K (2010) Implicit stress-update algorithm for isotropic Cam-clay model based on the subloading surface concept at finite strains. Int J Plast 26(5):634–658

    Article  MATH  Google Scholar 

  36. Yao YP, Hou W, Zhou AN (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 59(5):451–469

    Article  Google Scholar 

  37. Yin Z-Y, Chang CS (2009) Microstructural modelling of stress-dependent behaviour of clay. Int J Solids Struct 46(6):1373–1388

    Article  MATH  Google Scholar 

  38. Yin Z-Y, Chang CS (2013) Stress-dilatancy for sand under loading and unloading conditions. Int J Num Anal Methods Geomech. doi:10.1002/nag.1125

  39. Yin Z-Y, Chang CS, Hicher PY, Karstunen M (2009) Micromechanical analysis of kinematic hardening in natural clay. Int J Plast 25(8):1413–1435

    Article  MATH  Google Scholar 

  40. Yin Z-Y, Chang CS, Hicher PY (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14–15):1933–1951

    Article  MATH  Google Scholar 

  41. Yu H-S, Khong C, Wang J (2007) A unified plasticity model for cyclic behaviour of clay and sand. Mech Res Commun 34:97–114

    Article  MATH  Google Scholar 

  42. Zervoyannis C (1982) Etude synthetique des proprietes mecaniques des argiles et des sables sur chemins oedometrique et triaxial de revolution. Ph.D. thesis, Ecole Centrale de Paris

Download references

Acknowledgments

This research was financially supported by the opening project of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2013K025), the National Natural Science Foundation of China (Grant No. 41240024), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110073120012), and the Shanghai Pujiang Talent Plan (Grant No. 11PJ1405700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, ZY., Xu, Q. & Hicher, PY. A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotech. 8, 509–523 (2013). https://doi.org/10.1007/s11440-013-0206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-013-0206-y

Keywords

Navigation