Skip to main content
Log in

Criterion for flow liquefaction instability

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study describes a general liquefaction flow instability criterion for elastoplastic soils based on the concept of loss of uniqueness. We apply the criterion to the general case of axisymmetric loading and invoke the concepts of effective stresses and loss of controllability to arrive at a general criterion for the onset of liquefaction flow. The criterion is used in conjunction with an elastoplastic model for sands to generate numerical simulations. The numerical results are compared with experimental evidence to give the following insights into predicting liquefaction. (1) The onset of liquefaction flow is a state of instability occurring under both monotonic and cyclic tests, and coincides with loss of controllability. (2) The criterion proposed herein clearly and naturally differentiates between liquefaction flow (instability) and cyclic mobility. (3) Flow liquefaction not only depends on the potential of the material to generate positive excess pore pressures, but more importantly, it also depends on the current state of the material, which is rarely predicted by phenomenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A 0 :

Material constant in Dafalias Manzari model

A d :

Positive scaling function of dilatancy

c h :

Material constant in Dafalias Manzari model

d 2 W :

Second-order work per unit volume

e :

Current void ratio

e c :

Void ratio on critical state line

e 0 :

Initial void ratio

e c0 :

Critical state line material constant

F :

Yield surface

G :

Shear modulus

G 0 :

Elastic shear modulus

H :

Hardening modulus

H L :

Critical hardening modulus

h :

Positive state variable in Dafalias Manzari model

h 0 :

Material constant in Dafalias Manzari model

K :

Bulk modulus

M :

Critical stress ratio

m :

Material constant in Dafalias Manzari model

M b :

Bounding stress ratio

M d :

Dilatancy stress ratio

n b :

Material constant in Dafalias Manzari model

n d :

Material constant in Dafalias Manzari model

η in :

Initial value of η at initiation of a new loading process

p :

Volumetric stress

\( \dot{p} \) :

Volumetric stress rate

P at :

Atmospheric pressure

Q :

Plastic potential

q :

Deviatoric stress

\( \dot{q} \) :

Deviatoric stress rate

z :

Fabric dilatancy factor

z max :

Material constant in Dafalias Manzari model

α :

Back stress ratio

\( \dot{\alpha } \) :

Evolution law for back stress

β :

Dilatancy

\( \dot{\boldsymbol{\epsilon}} \) :

Strain vector increment

\( \dot{\epsilon}_{\text{a}} \) :

Axial strain rate

\( \dot{\epsilon}_{\text{r}} \) :

Radial strain rate

\( \dot{\epsilon }_{\text{s}} \) :

Total deviatoric strain rate

\( \dot{\epsilon}_{\text{s}}^{\text{e}} \) :

Elastic deviatoric strain rate

\( \dot{\epsilon}_{\text{s}}^{\text{p}} \) :

Plastic deviatoric strain rate

\( \dot{\epsilon}_{\text{v}} \) :

Total volumetric strain rate

\( \dot{\epsilon}_{\text{v}}^{\text{e}} \) :

Elastic volumetric strain rate

\( \dot{\epsilon}_{\text{v}}^{\text{p}} \) :

Plastic volumetric strain rate

η :

Stress ratio

v :

Poisson’s ratio

ψ:

State parameter

λ c :

Critical state line material constant

σ a :

Axial stress

σ r :

Radial stress

\( \dot{\sigma }_{\text{a}} \) :

Axial stress rate

\( \dot{\sigma }_{\text{r}} \) :

Radial stress rate

ξ:

Critical state line material constant

References

  1. Alarcón-Guzmán A, Leonards A, Chameau L (1988) Undrained monotonic and cyclic strength of sands. J Geotech Eng 114(10):1089–1108

    Article  Google Scholar 

  2. Andrade JE (2009) A predictive framework for liquefaction instability. Géotechnique 59(8):673–682

    Article  Google Scholar 

  3. Borja RI (2002) Bifurcation of elastoplastic solids to shear band mode at finite strains. Comput Methods Appl Mech Eng 191(46):5287–5314

    Article  MathSciNet  MATH  Google Scholar 

  4. Borja RI (2006) Condition for liquefaction instability in fluid-saturated granular soils. Acta Geotech 1(4):211–224

    Article  Google Scholar 

  5. Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35:99–112

    Article  Google Scholar 

  6. Castro G (1969). Liquefaction of sands, Harvard Soil Mechanics Series, No.81, Pierce Hall

  7. Castro G (1987). On the behaviour of soils during earthquake liquefaction. Technical report, Geotechnical engineers Inc., Winchester, MA. 01890. USA

  8. Dafalias YF, Manzari MT (2004) Simple plasticity sand model accounting for fabric change effects. J Eng Mech 130(6):622–633

    Article  Google Scholar 

  9. Darve F (1996) Liquefaction phenomenon of granular materials and constitutive instability. Eng Comput 13(7):5–28

    Article  MATH  Google Scholar 

  10. Darve F, Laouafa F (2000) Instabilities in granular materials and application to landslides. Mech Cohesive-Frictional Mater 5(8):627–652

    Article  Google Scholar 

  11. Gajo A (2004) The influence of system compliance on collapse of triaxial sand samples. Can Geotech J 41:257–273

    Article  Google Scholar 

  12. Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6(3):236–249

    Article  MATH  Google Scholar 

  13. Hyde A, Higuchi T, Yasuhara K (2006) Liquefaction, cyclic mobility, and failure of silt. J Geotech Geoenviron Eng 132(6):716–731

    Article  Google Scholar 

  14. Ishihara K, Tatsuoka F, Yasuda S (1975) Undrained deformation and liquefaction of sand under cyclic stress. Soils Found 15(1):29–44

    Article  Google Scholar 

  15. Jeremic B, Cheng Z, Taiebat M, Dafalias Y (2008) Numerical simulation of fully saturated porous material. Int J Numer Anal Meth Eng 24:1636–1660

    Google Scholar 

  16. Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall International Series, New Jersey

    Google Scholar 

  17. Lade PV (1992) Static instability and liquefaction of loose fine sandy slopes. J Geotech Eng 118:51–71

    Article  Google Scholar 

  18. Lade PV (1994) Instability and liquefaction of granular materials. Comput Geotech 16(2):123–151

    Article  Google Scholar 

  19. Lade PV (1999) Instability of granular materials. In: Lade PV, Yamamuro JA (eds) Physics and mechanics of soil liquefaction. Balkema, Rotterdam, pp 3–16

    Google Scholar 

  20. Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenviron Eng 124(12):1215–1217

    Article  Google Scholar 

  21. Manzari MT, Dafalias YF (1997) A critical state two-surface plasticity model for sands. Géotechnique 47(2):255–272

    Article  Google Scholar 

  22. Manzari MT, Prachathananukit R (2001) On integration of a cyclic soil plasticity model. Int J Numer Anal Meth Geomech 25:525–549

    Article  MATH  Google Scholar 

  23. Nova R (1994) Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes. J Mech Behav Mater 5:193–201

    Article  Google Scholar 

  24. National Research Council (NRC) (1985) Liquefaction of soils during earthquakes. National Academy Press, Washington DC

    Google Scholar 

  25. Qadimi A, Coop M (2007) The undrained cyclic behaviour of a carbonate sand. Géotechnique 57(9):739–750

    Article  Google Scholar 

  26. Schofield A, Wroth P (1968) Critical state soil mechanics. McGraw-Hill, New York

    Google Scholar 

  27. Seed H (1979). Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J Geotech Eng Division 105 (GT2) pp 201–255

    Google Scholar 

  28. Sladen J, D’hollander R, Hight D (1985) The liquefaction of sands, a collapse surface approach. Can Geotech J 22(4):564–578

    Article  Google Scholar 

  29. Taiebat M, Jeremic B, Dafalias Y, Kaynia A, Cheng Z (2010) Propagation of seismic waves through liquefied soils. Soils Dyn Earthquake Eng 30:236–257

    Article  Google Scholar 

  30. Vaid YP, Chern JC (1983) Effect of static shear on resistance to liquefaction. Soils Found 23:47–60

    Article  Google Scholar 

  31. Vaid YP, Chern JC (1985) Cyclic and monotonic undrained response of saturated sand. Advances in the Art of Testing Soils under Cyclic Conditions. ASCE, pp 120–147

  32. Vaid YP, Sivathalayan S (2000) Fundamental factors affecting liquefaction susceptibility of sands. Can Geotech J 37(3):592–606

    Article  Google Scholar 

  33. Verdugo R, Ishihara K (1996) The steady state of sandy soils. Soils Found 33:81–92

    Article  Google Scholar 

  34. Yamamuro J, Covert K (2001) Monotonic and cyclic liquefaction of very loose sands with high silt content. J Geotech Geoenviron Eng 127(4):314–324

    Article  Google Scholar 

  35. Yilmaz Y, Mollamahmutoglu M (2009) Characterization of liquefaction susceptibility of sands by means of extreme void ratios and/or void ratio range. J Geotech Geoenviron Eng 135(12):1986–1990

    Article  Google Scholar 

Download references

Acknowledgments

AMR acknowledges the financial support given to this work by Pontificia Universidad Javeriana by grant number 004705 'Numerical and experimental research of diffuse instability in granular matter.' Support for JEA’s work was partially provided by NSF grant number CMMI-1060087. This support is gratefully acknowledged. The authors thank Ivan Vlahinic and Utkarsh Mital from Caltech for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Andrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, J.E., Ramos, A.M. & Lizcano, A. Criterion for flow liquefaction instability. Acta Geotech. 8, 525–535 (2013). https://doi.org/10.1007/s11440-013-0223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-013-0223-x

Keywords

Navigation