Skip to main content
Log in

Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study aims to provide knowledge on the thermo-mechanical behaviour of heat exchanger piles, through a laboratory scale model. The model pile (20 mm in external diameter) was embedded in dry sand. The behaviour of the axially loaded pile under thermal cycles was investigated. After applying the axial load on the pile head, the pile temperature was varied between 5 and 30 °C. Seven tests, corresponding to various axial loads ranging from 0 to 70 % of the pile estimated bearing capacity, were performed. The results on pile head displacement show that heating under low axial load induced heave and cooling induced settlement; the pile temperature-displacement curve was found to be reversible and compatible with the thermal expansion curve of the pile. However, at higher axial loads, irreversible settlement of the pile head was observed after a few thermal cycles. The axial load profile measured by the strain gauges evidenced that the pile head load was mainly transferred to the pile toe. Nevertheless, thermal cycles modified significantly the mobilised skin friction along the pile. The total pressure measured at various locations in the soil mass was also slightly influenced by the thermal cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Afnor (1999) Essai statique de pieu sous effort axial. NF P 94–150

  2. Amatya B, Soga K, Bourne-Webb P, Amis T, Laloui L (2012) Thermo-mechanical behaviour of energy piles. Géotechnique 62(6):503–519

    Article  Google Scholar 

  3. Baudouin G (2010) Sols renforcés par inclusions rigides: modélisation physique en centrifugeuse de remblais et de dallage. PhD thesis, Université de Nantes, France

  4. Bourne-Webb P, Amatya B, Soga K, Amis T, Davidson C, Payne P (2009) Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59(3):237–248

    Article  Google Scholar 

  5. De Moel M, Bach PM, Bouazza A, Singh RM, Sun JLO (2010) Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia. Renew Sustain Energy Rev 14(9):2683–2696

    Article  Google Scholar 

  6. Diao N, Li Q, Fang Z (2004) Heat transfer in ground heat exchangers with groundwater advection. Int J Therm Sci 43:1203–1211

    Article  Google Scholar 

  7. Dupla JC, Canou J, Dinh AQ (2008) Caractérisation de mélanges de sables d’Hostun. rapport PN ASIRI n°2.08.3.07

  8. Esen H, Inalli M, Esen Y (2009) Temperature distributions in boreholes of a vertical ground-coupled heat pump system. Renew Energy 34:2672–2679

    Article  Google Scholar 

  9. Fioravante V (2002) On the shaft friction modelling of non displacement piles in sand. Soils Found 42(2):23–33

    Article  Google Scholar 

  10. Jardine RJ, Zhu B, Foray P, Dalton CP (2009) Experimental arrangement for investigation of soil stresses developed around a displacement pile. Soils Found 49(5):661–673

    Article  Google Scholar 

  11. Kalantidou A, Tang AM, Pereira JM, Hassen G (2012) Preliminary study on the mechanical behaviour of heat exchanger pile in physical model, Géotechnique 62. doi:10.1680/geot.11.T.013

  12. Laloui L, Moreni M, Vulliet L (2003) Comportement d’un pieu bi-fonction, fondation et échangeur de chaleur. Can Geotech J 40(2):388–402

    Article  Google Scholar 

  13. Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigation of the behaviour of a heat exchanger pile. Int J Numer Anal Methods 30(8):763–781

    Article  Google Scholar 

  14. Le Kouby A (2003) Comportement de micropieux modèles en chambre d’étalonnage. Application aux effets de groupe et aux sollicitations cycliques. PhD thesis, Ecole Nationale des Ponts et Chaussées, France

  15. Le Kouby A, Canou J, Dupla JC (2004) Behaviour of model piles subjected to cyclic axial loading. In: Triantafyllidis T (ed) Cyclic behaviour of soils and liquefaction phenomena. Taylor & Francis Group, London, pp 159–166

    Chapter  Google Scholar 

  16. McCartney JS, Rosenberg J (2011) Impact of heat exchange on side shear in thermo-active foundations. In: Jie H, Daniel E, Alzamora PE (eds) Proceedings of the geo-frontiers 2011 conference, vol 211. ASTM, Geotechnical Special Publications (GSP), pp 488–498

  17. Parkin AK, Lunne T (1982) Boundary effects in the laboratory calibration of a cone penetrometer for sand. In: Proceedings of the 2nd European symposium on penetration testing, vol 2, pp 761–768

  18. Peron H, Knellwolf C, Laloui L (2011) A method for the geotechnical design of heat exchanger piles. In: Jie H, Daniel E, Alzamora PE (eds) Proceedings of the geo-frontiers 2011 conference, vol 211. ASTM, Geotechnical Special Publications (GSP), pp 470–479

  19. Sakr M, El Naggar MH (2003) Centrifuge modelling of tapered piles in sand. Geotech Test J 26(1):22–35

    Google Scholar 

  20. Talesnick ML (2012) A different approach and result to the measurement of K0 of granular soils. Géotechnique 62. doi:10.1680/geot.11.P.009

  21. Wang B, Bouazza A, Haberfield C (2011) Preliminary observations from laboratory scale model geothermal pile subjected to thermo-mechanical loading. In: Jie H, Daniel E, Alzamora PE (eds) Proceedings of the geo-frontiers 2011 conference. ASCE, pp 430–439

  22. Yari M, Javani N (2007) Performance assessment of a horizontal-coil geothermal heat pump. Int J Energy Res 31(3):288–299

    Article  Google Scholar 

  23. Yavari N, Tang AM, Pereira JM, Hassen G (2013) A simple method for numerical modelling of energy pile’s mechanical behaviour. Géotech Lett. doi:10.1680/geolett.13.00053

Download references

Acknowledgments

The authors would like to express their great appreciation to the French National Research Agency for funding the present study, which is a part of the project PiNRJ “Geotechnical aspects of foundation energy piles”—ANR 2010 JCJC 0908 01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Minh Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, N., Tang, A.M., Pereira, JM. et al. Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling. Acta Geotech. 9, 385–398 (2014). https://doi.org/10.1007/s11440-014-0310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-014-0310-7

Keywords

Navigation