Skip to main content
Log in

Unified strength criterion for soils, gravels, rocks, and concretes

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

There are both diversity and unity in the strength characteristics of different geomaterials and concretes. Based on the generalized nonlinear strength theory, a simple but unified strength criterion (USC) is proposed for various materials, such as soils, gravels, rocks, and concretes. Power function is used as the failure curve of the USC in meridian plane, while the shape of failure curve in π-plane is curved triangle, which is between the SMP and Mises criterion. With only four independent parameters, which are convenient to be determined, the proposed criterion is able to take the effects of friction, cohesion, hydrostatic pressure, and intermediate principal stress into consideration. The proposed criterion is compared with some widely used unified strength criteria, such as the Zienkiewicz–Pande criterion and the Lade criterion, against the experimental results for various soils, gravels, rocks, and concretes. The comparison between the predicted and observed results confirmed the validity of the proposed criterion used as a USC for geomaterials and concretes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Argyris JH, Faust G, Szimmat J, Warnke EP, Willam KJ (1974) Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nucl Eng Des 28(1):42–75

    Article  Google Scholar 

  2. Aubertin M, Li L, Simon R (2000) A multiaxial stress criterion for short-and long-term strength of isotropic rock media. Int J Rock Mech Min Sci 37(8):1169–1193

    Article  Google Scholar 

  3. Benz T, Schwab R, Kauther RA, Vermeer PA (2008) A Hoek–Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min Sci 45(2):210–222

    Article  Google Scholar 

  4. Boswell LF, Chen Z (1987) A general failure criterion for plain concrete. Int J Solids Struct 23(5):621–630

    Article  MATH  Google Scholar 

  5. Chang KT, Cheng MC (2014) Estimation of the shear strength of gravel deposits based on field investigated geological factors. Eng Geol 171:70–80

    Article  Google Scholar 

  6. Chen WF (1982) Plasticity in reinforced concrete. McGraw-Hill, New York

    Google Scholar 

  7. Chen WF, Saleeb AF (1982) Constitutive equations for engineering materials. Wiley, New York

    MATH  Google Scholar 

  8. Fragaszy RJ, Su J, Siddiqi FH, Ho C (1992) Modeling strength of sandy gravel. J Geotech Eng 118(6):920–935

    Article  Google Scholar 

  9. Gao ZW, Zhao JD, Yao YP (2010) A generalized anisotropic failure criterion for geomaterials. Int J Solids Struct 47(22):3166–3185

    Article  MATH  Google Scholar 

  10. Gudehus G (1979) A comparison of some constitutive laws for soils under radially symmetric loading and unloading. In: Proceedings of the 3rd numerical method in Geomechanics, Aachen, 2–6 April, Balkema, Amsterdam

  11. Guo ZH (1997) Strength and deformation of concrete. Tsinghua University, Beijing

    Google Scholar 

  12. Hashiguchi K (2002) A proposal of the simplest convex-conical surface for soils. Soils Found 42(3):107–113

    Article  MathSciNet  Google Scholar 

  13. Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Geoenviron 106(GT9):1013–1035

    Google Scholar 

  14. Houlsby GT (1986) A general failure criterion for frictional and cohesive materials. Soils Found 26(2):97–101

    Article  Google Scholar 

  15. Hoyos LR, Pérez-Ruiz DD, Puppala AJ (2011) Modeling unsaturated soil response under suction-controlled true tri-axial stress paths. Int J Geomech 12(3):292–308

    Article  Google Scholar 

  16. Kim MK, Lade PV (1984) Modelling rock strength in three dimensions. Int J Rock Mech Min Sci Geomech Abstr 21(1):21–33

    Article  MATH  Google Scholar 

  17. Kong YX, Zhao JD, Yao YP (2013) A failure criterion for cross-anisotropic soils considering microstructure. Acta Geotech 8(6):665–673

    Article  Google Scholar 

  18. Kotsovos MD (1979) A mathematical description of the strength properties of concrete under generalized stress. Mag Concr Res 31(108):151–158

    Article  Google Scholar 

  19. Krenk S (1996) Family of invariant stress surfaces. J Eng Mech 122(3):201–208

    Article  Google Scholar 

  20. Lade PV (1977) Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int J Solids Struct 13(11):1019–1035

    Article  MATH  Google Scholar 

  21. Lade PV (2007) Modeling failure in cross-anisotropic frictional materials. Int J Solids Struct 44(16):5146–5162

    Article  MATH  Google Scholar 

  22. Lade PV, Duncan JM (1975) Elastoplastic stress–strain theory for cohesionless soil. J Geotech Eng Div 101(10):1037–1053

    Google Scholar 

  23. Launay P, Gachon H (1970) Strain and ultimate strength of concrete under tri-axial stress. ACI Spec Publ 34(1):269–282

    Google Scholar 

  24. Lee DH, Juang CH, Lin HM, Yeh SH (2002) Mechanical behavior of Tien-Liao mudstone in hollow cylinder tests. Can Geotech J 39(3):744–756

    Article  Google Scholar 

  25. Li L, Aubertin M, Simon R, Bussière B (2005) Formulation and application of a general inelastic locus for geomaterials with variable porosity. Can Geotech J 42(2):601–623

    Article  Google Scholar 

  26. Lin FB, Bazant ZP (1986) Convexity of smooth yield surface of frictional material. J Eng Mech 112(11):1259–1262

    Article  Google Scholar 

  27. Liu MD, Carter JP (2003) General strength criterion for geomaterials. Int J Geomech 3(2):253–259

    Article  Google Scholar 

  28. Liu MD, Indraratna BN (2010) General strength criterion for geomaterials including anisotropic effect. Int J Geomech 11(3):251–262

    Article  Google Scholar 

  29. Liu MC, Gao YF, Liu HL (2012) A nonlinear Drucker–Prager and Matsuoka–Nakai unified failure criterion for geomaterials with separated stress invariants. Int J Rock Mech Min Sci 50:1–10

    Article  MATH  Google Scholar 

  30. Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. Proc Jpn Soc Civil Eng 232:59–70

    Article  Google Scholar 

  31. Matsuoka H, Sun DA (1995) Extension of spatially mobilized plane (SMP) to frictional and cohesive materials and its application to cemented sands. Soils Found 35(4):63–72

    Article  Google Scholar 

  32. Matsuoka H, Yao YP, Sun DA (1999) The Cam-clay models revised by the SMP criterion. Soils Found 39(1):81–95

    Article  Google Scholar 

  33. Matsuoka H, Sun DA, Kogane A, Fukuzawa N, Ichihara W (2002) Stress-strain behaviour of unsaturated soil in true tri-axial tests. Can Geotech J 39(3):608–619

    Article  Google Scholar 

  34. Nakai T, Matsuoka H (1983) Shear behaviours of sand and clay under three-dimensional stress condition. Soils Found 23(2):26–42

    Article  Google Scholar 

  35. Nakai T, Matsuoka H, Okuno N, Tsuzuki K (1986) True tri-axial tests on normally consolidated clay and analysis of the observed shear behaviour using elastoplastic constitutive models. Soils Found 26(4):67–78

    Article  Google Scholar 

  36. Ohmaki S (1979) Strength and deformation characteristics of over consolidated cohesive soil. In Proceeding of 3rd international conference on numerical method in geomechanics, Rotterdam, pp 465–474

  37. Ottosen NS (1977) A failure criterion for concrete. J Eng Mech Div 103(4):527–535

    Google Scholar 

  38. Podgórski J (1985) General failure criterion for isotropic media. J Eng Mech 111(2):188–201

    Article  Google Scholar 

  39. Ramamurthy T, Rao GV, Rao KS (1988) A nonlinear strength criterion for rocks. In: 5th Australia–New Zealand Conference on Geomechanics, Sydney, pp 247–252

  40. Reddy KR, Saxena SK (1993) Effects of cementation on stress-strain and strength characteristics of sands. Soils Found 33(4):121–134

    Article  Google Scholar 

  41. Satake M (1971) A proposal of new yield criterion for soils. Proc Jpn Soc Civil Eng 189:79–88

    Article  Google Scholar 

  42. Schreyer HL (1989) Smooth limit surfaces for metals, concrete, and geotechnical materials. J Eng Mech 115(9):1960–1975

    Article  Google Scholar 

  43. Seow PEC, Swaddiwudhipong S (2005) Failure surface for concrete under multiaxial load-a unified approach. J Mater Civil Eng 17(2):219–228

    Article  Google Scholar 

  44. Sheng DC, Sloan SW, Yu HS (2000) Aspects of finite element implementation of critical state models. Comput Mech 26(2):185–196

    Article  MATH  Google Scholar 

  45. Sheng DC, Zhou AN, Fredlund DG (2011) Shear strength criteria for unsaturated soils. Geotech Geol Eng 29(2):145–159

    Article  Google Scholar 

  46. Shi WC (2008) True tri-axial tests on coarse-grained materials and investigation of constitutive model. Ph.D thesis Hohai University, Nanjing (in Chinese)

  47. Shi SZ, Yang GH (1987) An improvement of the commonly used yield function for rock material. Chin J Geotech Eng 9(2):60–69 (in Chinese)

    MathSciNet  Google Scholar 

  48. Sun DA, Matsuoka H, Yao YP, Ichihara W (2000) An elastoplastic model for unsaturated soil in three-dimensional stresses. Soils Found 40(3):17–28

    Article  Google Scholar 

  49. Takahashi M, Koide H (1989) Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m. In Proceedings of Rock at Great Depth, Balkema, Brookfield, VT, pp 19–26

  50. Wiebols G, Cook N (1968) An energy criterion for the strength of rock in polyaxial compression. Int J Rock Mech Min Sci Geomech Abstr 5(6):529–549

    Article  Google Scholar 

  51. Willam KJ, Warnke EP (1975) Constitutive model for the tri-axial behavior of concrete. In: Proceedings, international association for bridge and structural engineering, ISMES, Bergamo, Italy, pp 1–30

  52. Yao YP, Lu DC, Zhou AN, Zou B (2004) Generalized non-linear strength theory and transformed stress space. Sci China Ser E Technol Sci 47(6):691–709

    Article  MATH  Google Scholar 

  53. Yu XZ, Ju X (1983) The strength and failure of concrete. Chin J Hydraul Eng 2:22–36 (in Chinese)

    Google Scholar 

  54. Yu MH, Liu FY (1990) Smooth ridge model of generalized twin shear stress criterion. Acta Mech Sin 6(2):213–216 (in Chinese)

    Google Scholar 

  55. Yu MH, Zan YW, Zhao J, Yoshimine M (2002) A unified strength criterion for rock material. Int J Rock Mech Min Sci 39(8):975–989

    Article  Google Scholar 

  56. Zienkiewicz OC, Pande GN (1977) Some useful forms of isotropic yield surfaces for soil and rock mechanics. In: Gudehus G (ed) Finite element in geomechanics. Wiley, New York, pp 179–190

    Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Basic Research Program of China (973 Program, Grant No. 2014CB047001), the National Natural Science Foundation of China (Grant Nos. 11272031, 51179003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Hu, J., Zhou, A. et al. Unified strength criterion for soils, gravels, rocks, and concretes. Acta Geotech. 10, 749–759 (2015). https://doi.org/10.1007/s11440-015-0404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-015-0404-x

Keywords

Navigation