Skip to main content
Log in

An assessment of the creep behaviour of Brazilian salt rocks using the multi-mechanism deformation model

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Salt rocks are geomaterials that exhibit several peculiarities, which require a particular approach in rock mechanics. In the field, those rocks are usually found in layered/bedded deposits and in domes or similar structures. Creep is one of the main deformation mechanisms associated with salt rocks, and this phenomenon is highly dependent on the stress state, temperature and mineralogy. Salt rock mechanics for engineering applications requires the definition of a powerful constitutive model and this is an ongoing challenge. Among the many available models, one of the most sophisticated physical constitutive models for salt rocks is the multi-mechanism deformation creep model (MD model). The main contribution of this work is to present a first effort in the use of the MD model for Brazilian salt rocks. Material-sensitive parameters have been calibrated for the Brazilian halite through two methodologies. Salt is modelled as an elasto-viscoplastic material. Numerical simulations using the finite element method have been carried out for triaxial creep tests, Pre-salt wellbore closure and mining gallery convergence in order to validate the parameter set and the methodologies. Excellent results have been observed in most of the applications for validation. Even so, validation efforts should continue to consolidate the parameters and identify possible limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Ashby MF (1972) A first report on deformation-mechanism maps. Acta Metall 20:887–897

    Article  Google Scholar 

  2. Botelho FVC (2008) Análise Numérica do Comportamento Mecânico do Sal em Poços de Petróleo. MSc. Dissertation, Department of Civil Engineering—Pontifical University Catholic of Rio de Janeiro (PUC-Rio) [Portuguese]

  3. Calister WD (2008) Ciência e Engenharia de Materiais—Uma Introdução, 7th edn. LTC, Rio de Janeiro [Portuguese]

  4. Costa AM, Poiate Jr E (2009) Rocha salina na indústria do petróleo: aspectos relacionados à reologia e à perfuração de rochas salinas, In: Mohriak W, Szatmari P, Couto Anjos SM (eds) Sal—Geologia e Tectônica—Exemplos nas Bacias Brasileiras, pp 362-385. Beca, São Paulo[Portuguese]

  5. Costa AM (1984) Uma Aplicação de Métodos Computacionais e Princípios de Mecânica das Rochas no Projeto e Análise de Escavações Destinadas à Mineração Subterrânea. D.Sc. Thesis, COPPE—Federal University of Rio de Janeiro (UFRJ) [Portuguese]

  6. Costa AM, Poiate Jr E, Falcão JL, Coelho LFM (2005) Triaxial creep tests in salt applied in drilling through thick salt layers in campos basin. In: Proceedings, IADC/SPE drilling conference, held 23–25 February, Amsterdam, The Netherlands

  7. Costa AM, Amaral CS, Poiate E Jr, Pereira AMB, Martha LF, Gattass M, Roehl D (2012) Underground storage of natural gas and CO2 in salt caverns in deep and ultra-deep water offshore Brazil. In: Qian Zhou (ed) Harmonising rock engineering and the environment (12th ISRM congress), held October 16–21. Beijing, China, pp 1659–1664

    Google Scholar 

  8. D’Ellia PC (1991) Análise e Retroanálise do Comportamento de Fluência em Escavações Subterrâneas pelo Método dos Elementos Finitos. MSc. Dissertation, COPPE—Federal University of Rio de Janeiro (UFRJ) [Portuguese]

  9. Dusseault MB, Rothenburg L, Mraz DZ (1987) The design of openings in salt rock using a multiple mechanism viscoplastic law. In: Proceedings, 28th US symposium on rock mechanics, held June 29th–July 1st, Tucson, United States of America, pp 633–642

  10. Dusseault MB (1989) Saltrock Behavior as an Analogue to the Behavior of rock at great depth. In: Maury V, Fourmaintraux D (eds) Rock at great depth (ISRM international symposium), held August 30th–September 2nd, Pau, France, pp 11–17

  11. Fairhurst C, John CMSt, Midea NF, Eston SM, Fernandes AC, Bongiovanni LA (1979) Rock mechanics studies of proposed underground mining of potash in Sergipe, Brazil. In: Proceedings, 4th ISRM congress, held 02–08 September, Montreux, Switzerland, pp 131–137

  12. Falcão JL (2009) Perfuração de formações salíferas, In: Mohriak W, Szatmari P, Couto Anjos SM (eds) Sal—Geologia e Tectônica—Exemplos nas Bacias Brasileiras, pp 386–405. Beca, São Paulo [Portuguese]

  13. Firme PALP, Roehl D, Romanel C, Poiate Jr E, Costa AM (2014) Creep constitutive modeling applied to the stability of pre-salt wellbores through salt layers. In: Proceedings, 48th US rock mechanics/geomechanics symposium (ARMA symposium), held 01–04 June, Minneapolis, United States of America

  14. Firme PALP, Roehl D, Romanel C, Poiate Jr E, Costa AM (2015) Multi-Mechanism Deformation Creep Model Applied to Brazilian Salt Rocks. In: Roberts, Mellergard, Hansen (eds) The mechanical behavior of salt VIII conference (Salt Mech 8), held 26–28 May, Rapid City, United States of America, pp 339–346. Taylor & Francis Group/CRC Press/Balkema, London

  15. Firme PALP (2013) Modelagem Constitutiva e Análise Probabilística Aplicadas a Poços em Zonas de Sal. MSc. Dissertation, Department of Civil Engineering—Pontifical University Catholic of Rio de Janeiro (PUC-Rio) [Portuguese]

  16. Florencio CP (2009) A mineração de evaporitos, In: Mohriak W, Szatmari P, Couto Anjos SM (eds) Sal—Geologia e Tectônica—Exemplos nas Bacias Brasileiras, pp 406–415. Beca, São Paulo [Portuguese]

  17. Fossum AF, Fredrich JT (2007) Probabilistic analysis of borehole closure for through-salt well design. Acta Geotech 2:41–51

    Article  Google Scholar 

  18. Fossum AF, Fredrich JT (2002) Salt mechanics primer for near-salt and sub-salt deepwater Gulf of Mexico Field developments, SAND2002–2063. Sandia National Laboratories, Albuquerque

    Book  Google Scholar 

  19. Hambley DF, Dusseault MB, Mraz DZ (1988) Characterization of saltrock creep behavior. In: Proceedings, 29th US symposium on rock mechanics (ARMA symposium), held 13–15 June, Minneapolis, United States of America

  20. Hansen FD (2014) Micromechanics of isochoric salt deformation. In: Proceedings, 48th US rock mechanics/geomechanics symposium (ARMA symposium), held 01–04 June, Minneapolis, United States of America

  21. Hirth J, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley Interscience, New York

    Google Scholar 

  22. Jeremic ML (1994) Rock mechanics in salt minning. A.A.Balkema Publishers, Rotterdam

    Google Scholar 

  23. Lomenick TF, Bradshaw RL (1969) Deformation of rock salt in openings mined for the disposal of radioactive wastes. Rock Mech 1(1):5–30

    Article  Google Scholar 

  24. Medeiros FAS (1999) Análise do Comportamento de Colunas de Revestimento Frente à Movimentação do Sal em Poços de Petróleo. MSc. Dissertation, Department of Civil Engineering—Pontifical University Catholic of Rio de Janeiro (PUC-Rio) [Portuguese]

  25. Mohriak W, Szatmari P (2009) Introdução às propriedades químicas e físicas dos evaporitos, In: Mohriak W, Szatmari P, Couto Anjos SM (eds) Sal—Geologia e Tectônica—Exemplos nas Bacias Brasileiras, pp 19–40. Beca, São Paulo [Portuguese]

  26. Munson DE, Dawson PR (1979) Constitutive model for the low temperature creep of salt (with application to WIPP), SAND79-1853. Sandia National Laboratories, Albuquerque

    Book  Google Scholar 

  27. Munson DE (1979) Preliminary deformation-mechanism map for salt (with application to WIPP), SAND79-0076. Sandia National Laboratories, Albuquerque

    Book  Google Scholar 

  28. Munson DE (1999) Correction of creep behavior of domal salts. In: Proceedings, spring meeting solution mining research institute, held 14–16 April, Las Vegas, United States of America

  29. Munson DE, Fossum AF, Senseny PE (1989) Approach to first principles model prediction of measured WIPP in situ room closure in salt. In: Khair In (ed) Rock mechanics as a guide for efficient utilization of natural resources. Balkema, Rotterdam, pp 673–680

    Google Scholar 

  30. Munson DE (1997) Constitutive model of creep in rock salt applied to underground room closure. Int J Rock Mech Min Sci 34(2):233–247

    Article  Google Scholar 

  31. Munson DE (1999) Multimechanism deformation parameters of domal salts using transient creep analysis, SAND99-2104. Sandia National Laboratories, Albuquerque

    Book  Google Scholar 

  32. Munson DE (2004) M-D constitutive model parameters defined for gulf coast salt domes and structures. In: Proceedings, gulf rocks 2004, the 6th North America rock mechanics symposium (NARMS): rock mechanics across borders and disciplines (ARMA symposium), held 05–09 June, Houston, United States of America

  33. Odqvist FK (1974) Mathematical theory of creep and creep rupture. Clarendon Press, Oxford

    MATH  Google Scholar 

  34. Poiate Jr E, Costa AM, Falcão JL (2006) Well design for drilling through thick evaporite layers in santos basin, Brazil. In: Proceedings, IADC/SPE drilling conference, held 21–23 February, Miami, United States of America

  35. Poiate Jr E (2012) Mecânica das Rochas e Mecânica Computacional para Projeto de Poços de Petróleo em Zonas de Sal. DSc. Thesis, Department of Civil Engineering—Pontifical University Catholic of Rio de Janeiro (PUC-Rio) [Portuguese]

  36. Pouya A (2000) Micro–macro approach for the rock salt behaviour. Eur J Mech A Solids 19:1015–1028

    Article  MATH  Google Scholar 

  37. Stone CM (1997) SANTOS—a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids, SAND90-0543. Sandia National Laboratories, Albuquerque

    Book  Google Scholar 

  38. Tjioe M, Borja RI (2015) On the pore-scale mechanisms leading to brittle and ductile deformation behavior of crystalline rocks. Int J Numer Anal Meth Geomech 39:1165–1187

    Article  Google Scholar 

  39. van Sambeek LL, Ratigan JL, Hansen FD (1993) Dilatancy of rock salt in laboratory tests. Int J Rock Mech Min Sci Geomech Abstr 30(7):735–738

    Article  Google Scholar 

  40. Wawersik WR, Hannum DW, Lauson HS (1980) Compression and extension data for dome salt from West Hackberry, Louisiania, SAND79-0668. Sandia National Laboratories, Albuquerque

    Book  Google Scholar 

  41. Zhu C, Arson C (2014) A thermo-mechanical damage model for rock stiffness during anisotropic crack opening and closure. Acta Geotech 9:847–867

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) and Petroleo Brasileiro S.A. (Petrobras). The authors also acknowledge Petrobras’ R&D engineers Dr. Alvaro Maia da Costa and Dr. Edgard Poiate Jr. for the invaluable experience shared in the context of the research partnership between the Tecgraf Institute (http://www.tecgraf.puc-rio.br) and Petrobras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. L. P. Firme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firme, P.A.L.P., Roehl, D. & Romanel, C. An assessment of the creep behaviour of Brazilian salt rocks using the multi-mechanism deformation model. Acta Geotech. 11, 1445–1463 (2016). https://doi.org/10.1007/s11440-016-0451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0451-y

Keywords

Navigation