Skip to main content
Log in

A porous media finite element approach for soil instability including the second-order work criterion

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper deals with the hydromechanical modelling of the initiation of failure in soils with particular reference to landslides. To this end, localized and diffused failure modes are simulated with a finite element model for coupled elasto-plastic variably saturated porous geomaterials, in which the material point instability is detected with the second-order work criterion based on Hill’s sufficient condition of stability. Three different expressions of the criterion are presented, in which the second-order work is expressed in terms of generalized effective stress, of total stress and thirdly by taking into account the hydraulic energy contribution for partially saturated materials. The above-mentioned computational framework has been applied to study two initial boundary value problems: shear failure of a plane strain compression test of globally undrained water-saturated dense sand (where cavitation occurs at strain localization) and isochoric grain matter, and the onset of a flowslide from southern Italy due to rainfall (Sarno-Quindici events, May 5–6 1998). It is shown that the second-order work criterion applied at the material point level detects the local material instability and gives a good spatial indication of the extent of the potentially unstable domains in both the localized and diffused failure mechanisms of the cases analyzed, is able to capture the instability induced by cavitation of the liquid water and gives results according to the time evolution of plastic strains and displacement rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bilotta E, Cascini L, Foresta V, Sorbino G (2005) Geotechnical characterization of pyroclastic soils involved in huge flowslides. Geotech Geol Eng 23:365–402

    Article  Google Scholar 

  2. Bolzon G, Schrefler B, Zienkiewicz O (1996) Elastoplastic soil constitutive laws generalized to partially saturated states. Géotechnique 46:279–289. doi:10.1680/geot.1996.46.2.279

    Article  Google Scholar 

  3. Borja RI, White JA (2010) Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotech 5:1–14. doi:10.1007/s11440-009-0108-1

    Article  Google Scholar 

  4. Buscarnera G, Prisco C (2012) Discussing the definition of the second-order work for unsaturated soils. Int J Numer Anal Methods Geomech 36:36–49

    Article  Google Scholar 

  5. Cascini L (2004) The flowslides of May 1998 in the Campania region, Italy: the scientific emergency management. Ital Geotech J 2:11–44

    Google Scholar 

  6. Cascini L, Guida D, Nocera N, et al. (2000) A preliminary model for the landslides of May 1998 in Campania Region. In: Picarelli E (ed) Proceedings 2nd international symposium geotech. Hard Soil- Soft Rock. Balkema, Napoli, pp 1623–1649

  7. Cascini L, Sorbino G, Cuomo S (2003) Modelling of flowslides triggering in pyroclastic soils. In: Picarelli L (ed) Proceedings of international conference on “Fast Slope Movements—Predict Prev Risk Mitigation” Patron, Bologna, pp 93–100

  8. Cascini L, Cuomo S, Sorbino G (2005) Flow-like mass movements in pyroclastic soils: remarks on the modelling of triggering mechanisms. Ital Geotech J 4:11–31

    Google Scholar 

  9. Cascini L, Cuomo S, Guida D (2008) Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy. Eng Geol 96:107–125

    Article  Google Scholar 

  10. Cascini L, Cuomo S, Pastor M, Sorbino G (2010) Modeling of rainfall-induced shallow landslides of the flow-type. J Geotech Geoenviron Eng 136:85–98. doi:10.1061/(ASCE)GT.1943-5606.0000182

    Article  Google Scholar 

  11. Daouadji A, Darve F, Al Gali H et al (2011) Diffuse failure in geomaterials : Experiments, theory and modelling. Int J Numer Anal Methods Geomech 35:1731–1773

    Article  Google Scholar 

  12. Darve F (1994) Stability and uniqueness in geomaterials constitutive modelling. In: Chambon R, Desrues J, Vardoulakis I (eds) Localisation and bifurcation theory for soils and rocks. A.A. Balkema, Rotterdam, pp 73–88

    Google Scholar 

  13. Darve F, Servant G, Laouafa F, Khoa HDV (2004) Failure in geomaterials : continuous and discrete analyses. Comput Methods Appl Mech Eng 193:3057–3085. doi:10.1016/j.cma.2003.11.011

    Article  MATH  Google Scholar 

  14. Fredlund DG, Morgenstern NR, Widger RA (1978) The shear strength of unsaturated soils. Can Geotech J 15:313–321

    Article  Google Scholar 

  15. Gawin D, Schrefler BA (1996) Thermo-hydro-mechanical analysis of partially saturated. Eng Comput 13:113–143

    Article  MATH  Google Scholar 

  16. Gray W, Hassanizadeh M (1991) Unsaturated flow theory including interfacial phenomena. Water Resour Res 27:1855–1863

    Article  Google Scholar 

  17. Hassanizadeh M, Gray WG (1979) General conservation equations for multi-phase systems: 1. Averaging procedure. Adv Water Resour 2:131–144

    Article  Google Scholar 

  18. Hassanizadeh M, Gray WG (1979) General conservation equations for multi-phase systems: 2. Mass, momenta, energy and entropy equations. Adv Water Resour 2:191–203

    Article  Google Scholar 

  19. Hassanizadeh M, Gray WG (1980) General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Adv Water Resour 3:25–40

    Article  Google Scholar 

  20. Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6:239–249

    Google Scholar 

  21. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897. doi:10.1029/2000WR900090

    Article  Google Scholar 

  22. Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides 1. Annu Rev Earth Planet Sci 25:85–138. doi:10.1146/annurev.earth.25.1.85

    Article  Google Scholar 

  23. Laouafa F, Darve F (2002) Modelling of slope failure by a material instability mechanism. Comput Geotech 29:301–325

    Article  Google Scholar 

  24. Laouafa F, Prunier F, Daouadji A et al (2011) Stability in geomechanics, experimental and numerical analyses. Int J Numer Anal Methods Geomech 35:112–139. doi:10.1002/nag.996

    Article  MATH  Google Scholar 

  25. Lazari M, Sanavia L, Schrefler BA (2015) Local and non-local elasto-viscoplasticity in strain localization analysis of multiphase geomaterials. Int J Numer Anal Methods Geomech 39:1570–1592

    Article  Google Scholar 

  26. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, Chichester, UK

    MATH  Google Scholar 

  27. Lignon S, Laouafa F, Prunier F et al (2009) Hydro-mechanical modelling of landslides with a material instability criterion. Géotechnique 59:513–524. doi:10.1680/geot.7.00121

    Article  Google Scholar 

  28. Manzanal D, Pastor M, Merodo J (2011) Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part II: Unsaturated soil modeling. Int J Numer Anal Methods Geomech 35:1899–1917

    Article  Google Scholar 

  29. Mokni M, Desrues J (1998) Strain localisation measurements inundrained plane-strain biaxial tests on hostun RF sand. Mech Cohes Frict Mater 4:419–441

    Article  Google Scholar 

  30. Nicot F, Darve F (2007) A micro-mechanical investigation of bifurcation in granular materials. Int J Solids Struct 44:6630–6652. doi:10.1016/j.ijsolstr.2007.03.002

    Article  MATH  Google Scholar 

  31. Nicot F, Darve F (2011) Diffuse and localized failure modes: two competing mechanisms. Int J Numer Anal Meth Geomech 35:586–601

    Article  MATH  Google Scholar 

  32. Nicot F, Darve F, Khoa HDV (2007) Bifurcation and second-order work in geomaterials. Int J Numer Anal Methods Geomech 31:1007–1032. doi:10.1002/nag.573

    Article  MATH  Google Scholar 

  33. Nicot F, Daouadji A, Laouafa F (2011) Second-order work, kinetic energy and diffuse failure in granular materials. Granul Matter 13:19–28. doi:10.1007/s10035-010-0219-2

    Article  Google Scholar 

  34. Nova R (1994) Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes. J Mech Behav Mater 5:193–201

    Article  Google Scholar 

  35. Pastor M, Zienkiewicz O, Chan A (1990) Generalized plasticity and the modelling of soil behaviour. Int J Numer Anal Methods Geomech 14:151–190

    Article  MATH  Google Scholar 

  36. Prunier F, Chomette B, Brun M, Darve F (2016) Designing geotechnical structures with a proper stability criterion as a safety factor. Comput Geotech 71:98–114. doi:10.1016/j.compgeo.2015.09.007

    Article  Google Scholar 

  37. Sanavia L (2009) Numerical modelling of a slope stability test by means of porous media mechanics. Eng Comput 26:245–266. doi:10.1108/02644400910943608

    Article  MATH  Google Scholar 

  38. Sanavia L, Schrefler BA, Steinmann P (2002) A formulation for an unsaturated porous medium undergoing large inelastic strains. Comput Mech 28:137–151

    Article  MATH  Google Scholar 

  39. Sanavia L, Pesavento F, Schrefler BA (2006) Finite element analysis of non-isothermal multiphase geomaterials with application to strain localization simulation. Comput Mech 37:331–348

    Article  MATH  Google Scholar 

  40. Sanavia L, François B, Bortolotto R et al. (2008) Finite element modelling of thermo-elasto-plastic water saturated porous materials. J Theor Appl Mech 38:7–24. http://www.imbm.bas.bg/tm/jtam/vol.38-1-2.php

  41. Schrefler BA (1984) The finite element method in soil consolidation (with applications to surface subsidence). University College of Swansea

  42. Schrefler BA (2002) Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl Mech Rev 55:351–388

    Article  Google Scholar 

  43. Sibille L, Hadda N, Nicot F et al (2015) Granular plasticity, a contribution from discrete mechanics. J Mech Phys Solids 75:119–139

    Article  Google Scholar 

  44. Sorbino G, Foresta V (2002) Unsaturated hydraulic characteristics of pyroclastic soils. In: Proceedings of 3rd international conference on unsaturated soils. Swets and Zeitlinger, Lisse, pp 405–410

  45. Swanson FJ, Swanston DN (1977) Complex mass-movement terrains in the western Cascade Range, Oregon. Rev Eng Geol 3:113–124

    Article  Google Scholar 

  46. Zhang LL, Zhang LM, Tang WH (2005) Rainfall-induced slope failure considering variability of soil properties. Géotechnique 55:183–188

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the 7th Framework Programme of the European Union (ITN MuMoLaDe project 289911) and the University of Padova (60A09-5709/14) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Sanavia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakogiannou, E., Sanavia, L., Nicot, F. et al. A porous media finite element approach for soil instability including the second-order work criterion. Acta Geotech. 11, 805–825 (2016). https://doi.org/10.1007/s11440-016-0473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0473-5

Keywords

Navigation