Skip to main content

Advertisement

Log in

An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Soft structured clays usually exhibit complex behaviors, which can lead to difficulties in the determination of parameters and high testing costs. This paper aims to propose an efficient optimization method for identifying the parameters of advanced constitutive model for soft structured clays from only limited conventional triaxial tests. First, a new real-coded genetic algorithm (RCGA) is proposed by combining two new crossover and mutation operators for improving the performance of optimization. A newly developed elastic–viscoplastic model accounting for anisotropy, destructuration and creep features is enhanced with the cross-anisotropy of elasticity and is adopted for test simulations during optimization. Laboratory tests on soft Wenzhou marine clay are selected, with three of them being used as objectives for optimization and others for validation. The optimization process, using the new RCGA with a uniform sampling initialization method, is carried out to obtain the soil parameters. A classic genetic algorithm (NSGA-II)-based optimization is also conducted and compared to the RCGA for estimating the performance of the new RCGA. Finally, the optimal parameters are validated by comparing with other measurements and test simulations on the same clay. All comparisons demonstrate that a reliable solution can be obtained by the new RCGA optimization combined with the appropriate soil model, which is practically useful with a reduction in testing costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Biarez J, Hicher P-Y (1994) Elementary mechanics of soil behaviour: saturated remoulded soils. AA Balkema, Rotterdam

  2. Calvello M, Finno RJ (2004) Selecting parameters to optimize in model calibration by inverse analysis. Comput Geotech 31(5):410–424. doi:10.1016/j.compgeo.2004.03.004

    Article  Google Scholar 

  3. Chang CS, Yin ZY (2010) Micromechanical modeling for inherent anisotropy in granular materials. J Eng Mech ASCE 136(7):830–839. doi:10.1061/(asce)em.1943-7889.0000125

    Article  MathSciNet  Google Scholar 

  4. Chuang Y-C, Chen C-T, Hwang C (2015) A real-coded genetic algorithm with a direction-based crossover operator. Inf Sci 305(1):320–348

    Article  Google Scholar 

  5. Dan HB (2005) Time dependent behavior of natural soft clays. Ph.D. thesis, Zhejiang University, Hangzhou, China

  6. Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New York

    MATH  Google Scholar 

  7. Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9(2):115–148

    MathSciNet  MATH  Google Scholar 

  8. Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inform 26(4):30–45

    Google Scholar 

  9. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  10. Deep K, Thakur M (2007) A new mutation operator for real coded genetic algorithms. Appl Math Comput 193(1):211–230

    MathSciNet  MATH  Google Scholar 

  11. Gens A, Nova R (1993) Conceptual bases for a constitutive model for bonded soils and weak rocks. Geotech Eng Hard Soils Soft Rocks 1(1):485–494

    Google Scholar 

  12. Goldberg DE (1991) Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Syst 5(2):139–168

    MathSciNet  MATH  Google Scholar 

  13. Graham J, Houlsby G (1983) Anisotropic elasticity of a natural clay. Geotechnique 33(2):165–180

    Article  Google Scholar 

  14. Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif Intell Rev 12(4):265–319

    Article  MATH  Google Scholar 

  15. Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  16. Javadi A, Farmani R, Toropov V, Snee C (1999) Identification of parameters for air permeability of shotcrete tunnel lining using a genetic algorithm. Comput Geotech 25(1):1–24

    Article  Google Scholar 

  17. Jiang J, Ling HI, Kaliakin VN, Zeng X, Hung C (2016) Evaluation of an anisotropic elastoplastic–viscoplastic bounding surface model for clays. Acta Geotech. doi:10.1007/s11440-016-0471-7

    Google Scholar 

  18. Jin Y, Yin Z, Shen S, Hicher P (2016) Selection of sand models and identification of parameters using an enhanced genetic algorithm. Int J Numer Anal Methods Geomech. doi:10.1002/nag.2487

    Google Scholar 

  19. Jin Y-F, Yin Z-Y, Shen S-L, Hicher P-Y (2016) Investigation into MOGA for identifying parameters of a critical state based sand model and parameters correlation by factor analysis. Acta Geotech. doi:10.1007/s11440-015-0425-5

    Google Scholar 

  20. Karstunen M, Yin ZY (2010) Modelling time-dependent behaviour of Murro test embankment. Geotechnique 60(10):735–749

    Article  Google Scholar 

  21. Kimoto S, Oka F (2005) An elasto-viscoplastic model for clay considering destructuralization and consolidation analysis of unstable behavior. Soils Found 45(2):29–42

    Google Scholar 

  22. Lecampion B, Constantinescu A, Nguyen Minh D (2002) Parameter identification for lined tunnels in a viscoplastic medium. Int J Numer Anal Methods Geomech 26(12):1191–1211. doi:10.1002/nag.241

    Article  MATH  Google Scholar 

  23. Leroueil S, Kabbaj M, Tavenas F, Bouchard R (1985) Stress–strain–strain–rate relation for the compressibility of sensitive natural clays. Geotechnique 35(2):159–180

    Article  Google Scholar 

  24. Levasseur S, Malécot Y, Boulon M, Flavigny E (2008) Soil parameter identification using a genetic algorithm. Int J Numer Anal Methods Geomech 32(2):189–213. doi:10.1002/nag.614

    Article  MATH  Google Scholar 

  25. Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs. Springer, New York

    Book  MATH  Google Scholar 

  26. Mokhade AS, Kakde OG (2014) Overview of selection schemes in real-coded genetic algorithms and their applications. J Ind Intell Inf 2(1):71–77

    Google Scholar 

  27. Moreira N, Miranda T, Pinheiro M, Fernandes P, Dias D, Costa L, Sena-Cruz J (2013) Back analysis of geomechanical parameters in underground works using an evolution strategy algorithm. Tunn Undergr Space Technol 33:143–158

    Article  Google Scholar 

  28. Oka F, Takada N, Shimono K, Higo Y, Kimoto S (2016) A large-scale excavation in soft Holocene deposit and its elasto-viscoplastic analysis. Acta Geotech 11:625–642

    Article  Google Scholar 

  29. Pal S, Wije Wathugala G, Kundu S (1996) Calibration of a constitutive model using genetic algorithms. Comput Geotech 19(4):325–348

    Article  Google Scholar 

  30. Papon A, Riou Y, Dano C, Hicher PY (2012) Single-and multi-objective genetic algorithm optimization for identifying soil parameters. Int J Numer Anal Methods Geomech 36(5):597–618. doi:10.1002/nag.1019

    Article  Google Scholar 

  31. Poles S, Fu Y, Rigoni E (2009) The effect of initial population sampling on the convergence of multi-objective genetic algorithms. In: Barichard V, Ehrgott M, Gandibleux X, T'Kindt V (eds) Multiobjective programming and goal programming. Springer, New York, pp 123–133

  32. Pratihar DK (2007) Soft computing. Alpha Science International, UK

  33. Rocchi G, Fontana M, Da Prat M (2003) Modelling of natural soft clay destruction processes using viscoplasticity theory. Geotechnique 53(8):729–745

    Article  Google Scholar 

  34. Rokonuzzaman M, Sakai T (2010) Calibration of the parameters for a hardening–softening constitutive model using genetic algorithms. Comput Geotech 37(4):573–579. doi:10.1016/j.compgeo.2010.02.007

    Article  Google Scholar 

  35. Roscoe KH, Burland JB (1968) On the generalized stress–strain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, London, UK, pp 535–609

  36. Sobol IM (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7(4):86–112

    Article  MathSciNet  MATH  Google Scholar 

  37. Vardakos S, Gutierrez M, Xia C (2012) Parameter identification in numerical modeling of tunneling using the differential evolution genetic algorithm (DEGA). Tunn Undergr Space Technol 28:109–123. doi:10.1016/j.tust.2011.10.003

    Article  Google Scholar 

  38. Wang L-Z, Yin Z-Y (2012) Stress dilatancy of natural soft clay under an undrained creep condition. Int J Geomech. doi:10.1061/(ASCE)GM.1943-5622.0000271

    Google Scholar 

  39. Yao YP, Sun DA (2000) Application of Lade’s criterion to Cam–Clay model. J Eng Mech ASCE 126(1):112–119

    Article  Google Scholar 

  40. Yao YP, Hou W, Zhou AN (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 59(5):451–469

    Article  Google Scholar 

  41. Yao YP, Kong LM, Zhou AN (2015) Time-dependent unified hardening model: three-dimensional elasto-visco-plastic constitutive model for clays. J Eng Mech ASCE 141(6):0414162

    Google Scholar 

  42. Yepes V, Alcala J, Perea C, González-Vidosa F (2008) A parametric study of optimum earth-retaining walls by simulated annealing. Eng Struct 30(3):821–830

    Article  Google Scholar 

  43. Yin ZY, Chang CS (2009) Microstructural modelling of stress-dependent behaviour of clay. Int J Solids Struct 46(6):1373–1388

    Article  MATH  Google Scholar 

  44. Yin ZY, Hicher PY (2008) Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. Int J Numer Anal Methods Geomech 32(12):1515–1535

    Article  MATH  Google Scholar 

  45. Yin ZY, Karstunen M (2011) Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration. Acta Mech Solida Sin 24(3):216–230

    Article  Google Scholar 

  46. Yin ZY, Wang JH (2012) A one-dimensional strain-rate based model for soft structured clays. Sci China Technol Sci 55(1):90–100. doi:10.1007/s11431-011-4513-y

    Article  Google Scholar 

  47. Yin ZY, Chang CS, Karstunen M, Hicher PY (2010) An anisotropic elastic-viscoplastic model for soft clays. Int J Solids Struct 47(5):665–677

    Article  MATH  Google Scholar 

  48. Yin ZY, Chang CS, Hicher PY (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14–15):1933–1951. doi:10.1016/j.ijsolstr.2010.03.028

    Article  MATH  Google Scholar 

  49. Yin ZY, Karstunen M, Chang CS, Koskinen M, Lojander M (2011) Modeling time-dependent behavior of soft sensitive clay. J Geotech Geoenviron Eng 137(11):1103–1113. doi:10.1061/(asce)gt.1943-5606.0000527

    Article  Google Scholar 

  50. Yin Z-Y, Chang CS, Hicher PY, Wang JH (2011) Micromechanical analysis for the behavior of stiff clay. Acta Mech Sin 27(6):1013–1022

    Article  Google Scholar 

  51. Yin Z-Y, Yin J-H, Huang H-W (2015) Rate-dependent and long-term yield stress and strength of soft wenzhou marine clay: experiments and modeling. Mar Georesour Geotechnol 33(1):79–91

    Article  Google Scholar 

  52. Zeng LL (2010) Deformation mechanism and compression model of natural clays. Ph.D. thesis, Nanjing China, Southeast University

  53. Zhu QY, Yin Z-Y, Hicher PY, Shen SL (2016) Nonlinearity of one-dimensional creep characteristics of soft clays. Acta Geotech. doi:10.1007/s11440-015-0411-y

    Google Scholar 

  54. Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben AE, Bäck T, Schoenauer M, Schwefel H-P (eds) Parallel problem solving from nature—PPSN V. Springer, New York, pp 292–301

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 41372285, 51579179), the European project CREEP (PIAPP-GA-2011-286397). These supports are greatly appreciated. In addition, the authors thank Dr. Li-Zhong Wang, Professor at Institute of Geotechnical Engineering of Zhejiang University, for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Yin.

Appendix: Anisotropic elastic–viscoplastic model “ANICREEP”

Appendix: Anisotropic elastic–viscoplastic model “ANICREEP”

Based on Yin et al. [49], the main constitutive equations are listed as follows:

$$\dot{\varepsilon }_{ij} = \dot{\varepsilon }_{ij}^{\text{e}} + \dot{\varepsilon }_{ij}^{\text{vp}}$$
(12)
$$\dot{\varepsilon }_{ij}^{\text{vp}} = \mu \,\left( {\frac{{p_{m}^{\text{d}} }}{{p_{m}^{\text{r}} }}} \right)^{\beta } \frac{{\partial f_{\text{d}} }}{{\partial \sigma_{ij}^{\prime } }}$$
(13)
$$f_{\text{r}} = \frac{{\frac{3}{2}\left( {\sigma_{\text{d}}^{{\prime {\text{r}}}} - p^{{\prime {\text{r}}}} \alpha_{\text{d}} } \right):\left( {\sigma_{\text{d}}^{{\prime {\text{r}}}} - p^{{\prime {\text{r}}}} \alpha_{\text{d}} } \right)}}{{\left( {M^{2} - \frac{3}{2}\alpha_{\text{d}} :\alpha_{\text{d}} } \right)p^{{\prime {\text{r}}}} }} + p^{{\prime {\text{r}}}} - p_{\text{m}}^{\text{r}} = 0$$
(14)
$${\text{d}}\alpha_{\text{d}} = \omega \left[ {\left( {\frac{{3\sigma_{\text{d}} }}{{4p^{\prime } }} - \alpha_{\text{d}} } \right)\left\langle {{\text{d}}\varepsilon_{\text{v}}^{\text{vp}} } \right\rangle + \omega_{\text{d}} \left( {\frac{{\sigma_{\text{d}} }}{{3p^{\prime } }} - \alpha_{\text{d}} } \right){\text{d}}\varepsilon_{d}^{\text{vp}} } \right]$$
(15)
$$p_{\text{m}}^{\text{r}} = (1 + \chi )p_{\text{mi}}$$
(16)
$${\text{d}}p_{\text{mi}} = p_{\text{mi}} \left( {\frac{{1 + e_{0} }}{{\lambda_{i} - \kappa }}} \right){\text{d}}\varepsilon_{\text{v}}^{\text{vp}}$$
(17)
$${\text{d}}\chi = - \chi \xi \left( {\left| {{\text{d}}\varepsilon_{\text{v}}^{\text{vp}} } \right| + \xi_{\text{d}} {\text{d}}\varepsilon_{\text{d}}^{\text{vp}} } \right)$$
(18)

where \(\dot{\varepsilon }_{ij}\) denotes the (i, j) component of the total strain rate tensor and the superscripts e and vp represent, respectively, the elastic and the viscoplastic components. The elastic behavior in the proposed model is assumed to be isotropic, as in the modified Cam Clay model. The \(p_{\text{m}}^{\text{d}}\) is the size of the dynamic loading surface. The \(p_{\text{m}}^{\text{r}}\) and \(p_{\text{mi}}\) are the size of the reference and the intrinsic yield surfaces, respectively. The initial reference preconsolidation pressure \(\sigma_{p0}^{{{\prime }{\text{r}}}}\) obtained from an oedometer test can be used as an input to calculate the initial size p m0 using Eq. (14).

The slope of the critical state line M is expressed as follows:

$$M = M_{\text{c}} \left[ {\frac{{2c^{4} }}{{1 + c^{4} + \left( {1 - c^{4} } \right)\sin 3\theta }}} \right]^{{\frac{1}{4}}}$$
(19)

where \(c = (3 - \sin \,\phi_{\text{c}} )/(3 + \sin \,\phi_{\text{c}} )\) according to the Mohr–Coulomb yield criterion (ϕ c is the friction angle); \(- \pi /6 \le \theta = (1/3)\sin^{ - 1} ( - 3\sqrt 3 \bar{J}_{3} /2\bar{J}_{2}^{3/2} ) \le \pi /6\) using \(\bar{J}_{2} = (1/2)\bar{s}_{ij} :\bar{s}_{ij}\), \(\bar{J}_{3} = (1/3)\bar{s}_{ij} \bar{s}_{jk} \bar{s}_{ki}\) with \(\bar{s}_{ij} = \sigma_{\text{d}} - p^{\prime } \alpha_{\text{d}}\).

The model was implemented as a user-defined model in the 2D version 9 of PLAXIS for a coupled consolidation analysis based on Biot’s theory (see details in [49]).

During consolidation coupled analyses, the permeability k varies with void ratio e:

$$k = k_{0} 10^{{(e - e_{0} )/c_{\text{k}} }}$$
(20)

Soil constants and state variables are summarized in Table 8 with their recommended methods of determination (see details in [49]) (Fig. 20).

Table 8 State parameters and soil constants of elastic–viscoplastic model
Fig. 20
figure 20

Definitions for the model in a p′ − q space; and b one-dimensional compression condition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, ZY., Jin, YF., Shen, SL. et al. An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model. Acta Geotech. 12, 849–867 (2017). https://doi.org/10.1007/s11440-016-0486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0486-0

Keywords

Navigation