Skip to main content
Log in

An orthotropic interface damage model for simulating drying processes in soils

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The study of drying process in soils has received an increased attention in the last few years. This is very complex phenomenon that generally leads to the formation and propagation of desiccation cracks in the soil mass. In recent engineering applications, high aspect ratio elements have proved to be well suited to tackle this type of problem using finite elements. However, the modeling of interfaces between materials with orthotropic properties that generally exist in this type of problem using standard (isotropic) constitutive model is very complex and challenging in terms of the mesh generation, leading to very fine meshes that are intensive CPU demanding. A novel orthotropic interface mechanical model based on damage mechanics and capable of dealing with interfaces between materials in which the strength depends on the direction of analysis is proposed in this paper. The complete mathematical formulation is presented together with the algorithm suggested for its numerical implementation. Some simple yet challenging synthetic benchmarks are analyzed to explore the model capabilities. Laboratory tests using different textures at the contact surface between materials were conducted to evaluate the strengths of the interface in different directions. These experiments were then used to validate the proposed model. Finally, the approach is applied to simulate an actual desiccation test involving an orthotropic contact surface. In all the application cases the performance of the model was very satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

(© 2009 Canadian Science Publishing or its licensors. Reproduced with permission)

Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abu Al-Rub RK (2007) Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mech Mater 39:787–802. https://doi.org/10.1016/j.mechmat.2007.02.001

    Article  Google Scholar 

  2. Amarasiri AL, Kodikara JK, Costa S (2011) Numerical modelling of desiccation cracking. Int J Numer Anal Methods Geomech 35:82–96. https://doi.org/10.1002/nag.894

    Article  Google Scholar 

  3. Asahina D, Houseworth JE, Birkholzer JT et al (2014) Hydro-mechanical model for wetting/drying and fracture development in geomaterials. Comput Geosci 65:13–23. https://doi.org/10.1016/j.cageo.2013.12.009

    Article  Google Scholar 

  4. ASTM D3080 (2011) American Society for Testing and Materials. Stand Test Method Direct Shear Test Soils Under Consol Drained Cond. https://doi.org/10.1520/E0606-04E01

  5. Caballero A, Carol I, López CM (2006) A meso-level approach to the 3D numerical analysis of cracking and fracture of concrete materials. Fract Eng Mater Struct 29:979–991

    Article  Google Scholar 

  6. Caggiano A, Etse G, Martinelli E (2012) Zero-thickness interface model formulation for failure behavior of fiber-reinforced cementitious composites. Comput Struct 98–99:23–32. https://doi.org/10.1016/j.compstruc.2012.01.013

    Article  Google Scholar 

  7. Carol I, Prat PC, López CM (1997) Normal/shear cracking model: application to discrete crack analysis. J Eng Mech 123:765–773. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:8(765)

    Article  Google Scholar 

  8. Chen Q, Andrade JE, Samaniego E (2011) AES for multiscale localization modeling in granular media. Comput Methods Appl Mech Eng 200:2473–2482. https://doi.org/10.1016/j.cma.2011.04.022

    Article  MATH  Google Scholar 

  9. Etse G, Caggiano A, Vrech S (2012) Multiscale failure analysis of fiber reinforced concrete based on a discrete crack model. Int J Fract 178:131–146. https://doi.org/10.1007/s10704-012-9733-z

    Article  Google Scholar 

  10. Ferrara A, Pandolfi A (2008) Numerical modelling of fracture in human arteries. Comput Methods Biomech Biomed Eng 11:553–567. https://doi.org/10.1080/10255840701771743

    Article  Google Scholar 

  11. Geißler G, Netzker C, Kaliske M (2010) Discrete crack path prediction by an adaptive cohesive crack model. Eng Fract Mech 77:3541–3557. https://doi.org/10.1016/j.engfracmech.2010.04.029

    Article  Google Scholar 

  12. Gens A, Carol I, Alonso EE (1989) An interface element formulation for the analysis of soil–reinforcement interaction. Comput Geotech 7:133–151. https://doi.org/10.1016/0266-352X(89)90011-6

    Article  Google Scholar 

  13. Hamid TB, Miller GA (2009) Shear strength of unsaturated soil interfaces. Can Geotech J 46:595–606. https://doi.org/10.1139/T09-002

    Article  Google Scholar 

  14. Hauseux P, Roubin E, Seyedi DM, Colliat JB (2016) FE modelling with strong discontinuities for 3D tensile and shear fractures: application to underground excavation. Comput Methods Appl Mech Eng 309:269–287. https://doi.org/10.1016/j.cma.2016.05.014

    Article  MathSciNet  Google Scholar 

  15. Khoei AR, Moslemi H, Majd Ardakany K et al (2009) Modeling of cohesive crack growth using an adaptive mesh refinement via the modified-SPR technique. Int J Fract 159:21–41. https://doi.org/10.1007/s10704-009-9380-1

    Article  MATH  Google Scholar 

  16. Lakshmikantha MR, Prat PC, Ledesma A (2009) Image analysis for the quantification of a developing crack network on a drying soil. Geotech Test J. https://doi.org/10.1520/GTJ102216

    Google Scholar 

  17. Li B, Jiang Y, Mizokami T et al (2014) Anisotropic shear behavior of closely jointed rock masses. Int J Rock Mech Min Sci 71:258–271. https://doi.org/10.1016/j.ijrmms.2014.07.013

    Article  Google Scholar 

  18. Liu C, Tang CS, Shi B, Bin Suo W (2013) Automatic quantification of crack patterns by image processing. Comput Geosci 57:77–80. https://doi.org/10.1016/j.cageo.2013.04.008

    Article  Google Scholar 

  19. López CM, Carol I, Aguado A (2008) Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior. Mater Struct 41:583–599. https://doi.org/10.1617/s11527-007-9314-1

    Article  Google Scholar 

  20. López CM, Carol I, Aguado A (2008) Meso-structural study of concrete fracture using interface elements. II: compression, biaxial Brazilian test. Mater Struct 41:601–620

    Article  Google Scholar 

  21. Manzoli OL, Gamino AL, Rodrigues EA, Claro GKS (2012) Modeling of interfaces in two-dimensional problems using solid finite elements with high aspect ratio. Comput Struct 94–95:70–82. https://doi.org/10.1016/j.compstruc.2011.12.001

    Article  Google Scholar 

  22. Manzoli OL, Maedo MA, Bitencourt LAG, Rodrigues EA (2016) On the use of finite elements with a high aspect ratio for modeling cracks in quasi-brittle materials. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2015.12.026

    Google Scholar 

  23. Manzoli OL, Maedo MA, Rodrigues EA, Bittencourt TN (2014) Modeling of multiple cracks in reinforced concrete members using solid finite elements with high aspect ratio. In: Bicaninc N, Mang H, Meschke G, de Borst R (eds) Computational modelling of concrete structures (EURO-C 2014, St. Anton am Arlberg, Austria). CRC Press, Balkema

  24. Miller GA, Hamid TB (2007) Direct shear apparatus for unsaturated soil interface testing. ASTM Geotech Test J 30:182–191

    Google Scholar 

  25. Misra A (1999) Micromechanical model for anisotropic rock joints. J Geophys Res 104:23–175. https://doi.org/10.1029/1999JB900210

    Article  Google Scholar 

  26. Molinari JF, Gazonas G, Raghupathy R et al (2007) The cohesive element approach to dynamic fragmentation: the question of energy convergence. Int J Numer Methods Eng 69:484–503. https://doi.org/10.1002/nme.1777

    Article  MATH  Google Scholar 

  27. Mota A, Knap J, Ortiz M (2008) Fracture and fragmentation of simplicial finite element meshes using graphs. Int J Numer Methods Eng 73:1547–1570. https://doi.org/10.1002/nme.2135

    Article  MathSciNet  MATH  Google Scholar 

  28. Nahlawi H, Kodikara JK (2006) Laboratory experiments on desiccation cracking of thin soil layers. Geotech Geol Eng 24:1641–1664. https://doi.org/10.1007/s10706-005-4894-4

    Article  Google Scholar 

  29. Oliver J, Cervera M, Manzoli O (1999) Strong discontinuities and continuum plasticity models: the strong discontinuity approach. Int J Plast 15:319–351. https://doi.org/10.1016/S0749-6419(98)00073-4

    Article  MATH  Google Scholar 

  30. Oliver J, Huespe AE, Blanco S, Linero DL (2006) Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach. Comput Methods Appl Mech Eng 195:7093–7114. https://doi.org/10.1016/j.cma.2005.04.018

    Article  MATH  Google Scholar 

  31. Pan PZ, Rutqvist J, Feng XT, Yan F (2014) TOUGH-RDCA modeling of multiple fracture interactions in caprock during CO2 injection into a deep brine aquifer. Comput Geosci 65:24–36. https://doi.org/10.1016/j.cageo.2013.09.005

    Article  Google Scholar 

  32. Pandolfi A, Ortiz M (2002) An efficient adaptive procedure for three-dimensional fragmentation simulations. Eng Comput 18:148–159. https://doi.org/10.1007/s003660200013

    Article  Google Scholar 

  33. Pandolfi A, Weinberg K (2011) A numerical approach to the analysis of failure modes in anisotropic plates. Eng Fract Mech 78:2052–2069. https://doi.org/10.1016/j.engfracmech.2011.03.021

    Article  Google Scholar 

  34. Peron H, Hueckel T, Laloui L, Hu LB (2009) Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification. Can Geotech J 46:1177–1201. https://doi.org/10.1139/T09-054

    Article  Google Scholar 

  35. Phongthanapanich S, Dechaumphai P (2004) Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elem Anal Des 40:1753–1771. https://doi.org/10.1016/j.finel.2004.01.002

    Article  Google Scholar 

  36. Regueiro RA, Borja RI (1999) A finite element model of localized deformation in frictional materials taking a strong discontinuity approach. Finite Elem Anal Des 33:283–315. https://doi.org/10.1016/S0168-874X(99)00050-5

    Article  MATH  Google Scholar 

  37. Rodrigues EA, Manzoli OL, Bitencourt LAG Jr et al (2017) An adaptive concurrent multiscale model for concrete based on coupling finite elements. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2017.08.048

    Google Scholar 

  38. Rodríguez R, Sánchez M, Ledesma A, Lloret A (2007) Experimental and numerical analysis of desiccation of a mining waste. Can Geotech J 44:644–658. https://doi.org/10.1139/t07-016

    Article  Google Scholar 

  39. Sanchez M, Atique A, Kim S et al (2013) Exploring desiccation cracks in soils using a 2D profile laser device. Acta Geotech 8:583–596. https://doi.org/10.1007/s11440-013-0272-1

    Article  Google Scholar 

  40. Sánchez M, Manzoli OL, Guimarães LJN (2014) Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique. Comput Geotech 62:27–39. https://doi.org/10.1016/j.compgeo.2014.06.009

    Article  Google Scholar 

  41. Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12:277–296. https://doi.org/10.1007/BF00372173

    Article  MathSciNet  MATH  Google Scholar 

  42. Wen L, Tian R (2016) Improved XFEM: accurate and robust dynamic crack growth simulation. Comput Methods Appl Mech Eng 308:256–285. https://doi.org/10.1016/j.cma.2016.05.013

    Article  MathSciNet  Google Scholar 

  43. Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434. https://doi.org/10.1016/0022-5096(94)90003-5

    Article  MATH  Google Scholar 

  44. Zielinski M, Sánchez M, Romero E, Atique A (2014) Precise observation of soil surface curling. Geoderma 226–227:85–93. https://doi.org/10.1016/j.geoderma.2014.02.005

    Article  Google Scholar 

Download references

Acknowledgements

Marcelo Sánchez would like to acknowledge the financial support from the Sao Paulo Research Foundation (FAPESP, proc. 2016/19479-2). The authors also acknowledge the support from the National Council for Scientific and Technological Development (CNPq, proc. 234003/2014-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoli, O., Sánchez, M., Maedo, M. et al. An orthotropic interface damage model for simulating drying processes in soils. Acta Geotech. 13, 1171–1186 (2018). https://doi.org/10.1007/s11440-017-0608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0608-3

Keywords

Navigation