Skip to main content
Log in

Consistent modeling of a catastrophic flowslide at the Shenzhen landfill using a hydro-elasto-plastic model with solid–fluid transition

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Flow-type landslides are an important hazard that can cause great destruction due to the rapid flow velocity and large disaster area. This paper presents a catastrophic flowslide that recently occurred at a landfill in Shenzhen, China. This disaster involved an area about 1100 m in length and 630 m in maximum width, and caused the death of 77 people and the destruction of 33 buildings. The precise reason for the landfill’s failure is still unknown, and therefore we try to contribute an increased understanding of the event for future prevention. In this study, the failure mechanism of the studied slope was analyzed and described under partially saturated condition. The solid–fluid transition during the flowslide occurrence was described using a unified constitutive model. The model was used to perform the hydro-elasto-plastic modeling in the pre-failure stage, the viscous modeling in the post-failure stage, and the second-order work criterion was introduced in between to model the solid–fluid transition. The consistent evolution of the flowslide, including initiation, propagation, and deposit stages, was simulated and analyzed using the finite element method with Lagrangian integration points after careful calibration of the viscous parameters. The numerical results were compared with the real case and used to explain the failure mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abe K, Soga K, Bandara S (2014) Material point method for coupled hydromechanical problems. J Geotech Geoenviron 140(3):04013033

    Article  Google Scholar 

  2. Adhikary DP, Dyskin AV (2007) Modelling of progressive and instantaneous failures of foliated rock slopes. Rock Mech Rock Eng 40(4):349–362

    Article  Google Scholar 

  3. Ahonguio F, Jossic L, Magnin A, Dufour F (2016) Flow of an elasto-viscoplastic fluid around a flat plate: experimental and numerical data. J Non-Newton Fluid 238:131–139

    Article  Google Scholar 

  4. Anuário (2012) Brasileiro de Desastres Naturais, Ministery of National Integration, National Center for Management of Risks and Disasters, Brasília, 78

  5. Arairo W, Prunier F, Djéran-Maigre I, Darve F (2013) A new insight into modelling the behaviour of unsaturated soils. Int J Numer Anal Methods Geomech 37:2629–2654

    Google Scholar 

  6. Bandara S, Ferrari A, Laloui L (2015) Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method. Int J Numer Anal Methods Geomech 00:1–36

    Google Scholar 

  7. Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. CMES Comput Model Eng 5(6):477–495

    Google Scholar 

  8. Barnichon JD (1998) Finite element modelling in structural and petroleum geology. Ph.D. Thesis, University of Liege

  9. Bigoni D, Noselli G (2011) Experimental evidence of flutter and divergence instabilities induced by dry friction. J Mech Phys Solids 59(10):2208–2226

    Article  Google Scholar 

  10. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155

    Article  Google Scholar 

  11. Bishop AW (1959) Principle of effective stress. Teknisk Ukeblad 106(39):859–863

    Google Scholar 

  12. Buscarnera G, di Prisco C (2012) Discussing the definition of the second-order work for unsaturated soils. Int J Numer Anal Methods Geomech 36(1):36–49

    Article  Google Scholar 

  13. Cascini L, Cuomo S, Pastor M, Sorbino G, Piciullo L (2014) SPH run-out modelling of channelised landslides of the flow type. Geomorphology 214:502–513

    Article  Google Scholar 

  14. Colliat-Dangus JL (1986) Comportement des Materiaux Granulaires sous fortes contraintes. CPh.D. Thesis, Institut National Polytechnique de Grenoble, Grenoble, France

  15. Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth Sci Rev 40:209–227

    Article  Google Scholar 

  16. Cuomo S, Prime N, Iannone A, Dufour F, Cascini L, Darve F (2013) Large deformation FEMLIP drained analysis of a vertical cut. Acta Geotech 8:125–136

    Google Scholar 

  17. Daouadji A, Darve F, Gali HA, Hicher PY, Laouafa F, Lignon S, Nicot F, Nova R, Pinheiro M, Prunier F, Sibille L, Wan R (2011) Diffuse failure in geomaterials: experiments, theory and modeling. Int J Numer Anal Methods Geomech 35(16):1731–1773

    Article  Google Scholar 

  18. Darve F, Laouafa F (2000) Instabilities in granular material and application to landslides. Mech Cohes Frict Mater J 5(8):627–652

    Article  Google Scholar 

  19. Darve F, Servant G, Laouafa F, Khoa HDV (2004) Failure in geomaterials: continuous and discrete analyses. Comput Method Appl Mech Eng 193(27–29):3057–3085

    Article  Google Scholar 

  20. Desrues J, Chambon R (2002) Shear band analysis and shear moduli calibration. Int J Solids Struct 39(13–14):3757–3776

    Article  Google Scholar 

  21. Dufour F (2002) Dévelopements de la méthode des éléments finis avec des points d’intégration Lagrangiens: Applications à la géomécanique, Ph.D Thesis, Ecole centrale de Nante

  22. Guadagno FM, Revellino P, Grelle G (2001) The 1998 Sarno landslides: conflicting interpretations of a natural event. In: International conference on debris-flow hazards mitigation: mechanics

  23. Guo XG, Peng C, Wu W, Wang YQ (2016) A hypoplastic constitutive model for debris materials. Acta Geotech 11:1217–1229

    Article  Google Scholar 

  24. Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6:236–249

    Article  Google Scholar 

  25. Hiscott RN, James NP (1985) Carbonate debris flows, cow head group, western Newfoundland. J Sediment Petrol 55(5):735–745

    Google Scholar 

  26. Huang N (2006) Rhéologie des pâtes granulaires. Ph.D. Thesis, Université Paris 6

  27. Humgr O (1995) A model for the runout analysis of rapid flow slides, debris flows and avalanches. Can Geotech J 32:610–623

    Article  Google Scholar 

  28. Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Article  Google Scholar 

  29. Hutchinson (1988) General report: morphological and geotechnical parameters of landsllides in relation to geology and hydrogeology. In: Proceedings of 5th international symposium on landslides, AA Balkema, Rotterdam, Netherllands. C Bonnard

  30. Jafari NH, Stark TD, Merry S (2013) The July 10, 2000 Payatas landfill slope failure. Int J Geoeng Case Hist 2(3):208–228

    Google Scholar 

  31. Khoa HDV, Georgopoulos I, Darve F, Laouafa F (2006) Diffuse failure in geomaterials: experiments and modelling. Comput Geotech 33(1):1–14

    Article  Google Scholar 

  32. Lashkari A (2016) Prediction of flow liquefaction instability of clean and silty sands. Acta Geotech 11:987–1014

    Article  Google Scholar 

  33. Lavigne F, Wassmer P, Gomez C, Davies TA, Hadoko DS, Yan T (2014) The 21 February 2005, catastrophic waste avalanche at Leuwigajah dumpsite, Bandung, Indonesia. Geoenviron Disasters 1(1):10

    Article  Google Scholar 

  34. Li ZH, Dufour F, Darve F (2016) Hydro-elasto-plastic modelling with a solid/fluid transition. Comput Geotech 75:69–79

    Article  Google Scholar 

  35. Li ZH, Dufour F, Darve F (2016) Modelling rainfall-induced mudflows using FEMLIP and a unified hydro-elasto-plastic model with solid–fluid transition. Eur J Environ Civ Eng (published online) 01 August 2016

  36. Li ZH, Jiang YJ, Lv Q, Tao ZG, He MC (2017) Real-time monitoring and FEMLIP simulation of a rainfall-induced rockslide. Landslides (submitted)

  37. Lignon S, Laouafa F, Prunier F, Khoa HDV, Darve F (2009) Hydro-mechanical modelling of landslides with a material instability criterion. Geotechnique 59(6):513–524

    Article  Google Scholar 

  38. Merry S, Kavazanjian E Jr, Fritz WU (2005) Reconnaissance of the July 10, 2000, Payatas landfill failure. J Perform Constr Facil 19(2):100–107

    Article  Google Scholar 

  39. Mital U, Andrade JE (2016) Mechanics of origin of flow liquefaction instability under proportional strain triaxial compression. Acta Geotech 11:1015–1025

    Article  Google Scholar 

  40. Moresi LN, Solomatov VS (1995) Numerical investigation of 2D convection with extremely large viscosity variations. Phys Fluids 7:2154

    Article  Google Scholar 

  41. Moresi L, Dufour F, Muhlhaus H-B (2002) Mantle convection modeling with viscoelastic/brittle lithosphere: numerical methodology and plate tectonic modeling. Pure Appl Geophys 159(10):2335–2356

    Article  Google Scholar 

  42. Moresi L, Dufour F, Muhlhaus H-B (2003) A Lagrangian integration point finite element method for large deformation modelling of viscoelastic geomaterials. J Comput Phys 184:476–497

    Article  Google Scholar 

  43. Mualem Y (1974) A conceptual model of hysteresis. Water Resour Res 10:514–520

    Article  Google Scholar 

  44. Nicot F, Darve F (2011) Diffuse and localized failure modes: two competing mechanisms. Int J Numer Anal Methods Geomech 35(5):586–601

    Article  Google Scholar 

  45. Nicot F, Daouadji A, Laouafa F, Darve F (2011) Second-order work, kinetic energy and diffuse failure in granular materials. Granul Matter 13(1):19–28

    Article  Google Scholar 

  46. Nicot F, Sibille L, Darve F (2012) Failure in rate-independent granular materials as a bifurcation toward a dynamic regime. Int J Plasticity 29:136–154

    Article  Google Scholar 

  47. Ostrowski AM, Taussky O (1951) On the variation of the determinant of a positive finite matrix 1. Indagat Math New Ser 54(2):383–385

    Article  Google Scholar 

  48. Ouyang CJ, Zhou KQ, Xu Q, Yin JH, Peng DL, Wang DP, Li W (2016) Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides 14(2):705–718

    Article  Google Scholar 

  49. Pastor M, Quecedo M, Fernander Merodo JA, Herreros MI, Gonzalez E, Mira P (2002) Modelling tailings dams and mine waste dumps failures. Geotechnique 52:579–591

    Article  Google Scholar 

  50. Pastor M, Blanc T, Pastor MJ (2009) A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: application to fast catastrophic landslides. J Non-Newton Fluid 158:142–153

    Article  Google Scholar 

  51. Pastor M, Blanc T, Haddad B, Drempetic V, Morles MS, Dutto P, Martin Stickle M, Mira P, Fernanez Merodo JA (2015) Depth averaged models for fast landslide propagation: mathematical, rheological and numerical aspects. Arch Comput Method E 22:67–104

    Article  MathSciNet  Google Scholar 

  52. Pastor M, Stickler MM, Dutto P, Mira P, Merodo JAF, Blanc T, Sancho S, Benitez AS (2015) A viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides. Continuum Mech Therm 27:21–47

    Article  MathSciNet  Google Scholar 

  53. Peng C, Guo XG, Wu W, Wang YQ (2016) Unified modelling of granular media with smoothed particle hydrodynamics. Acta Geotech 11:1231–1247

    Article  Google Scholar 

  54. Prime N, Dufour F, Darve F (2013) Unified model for Geomaterial solid/fluid states and the transition in between. J Eng Mech 140(6):682–694

    Google Scholar 

  55. Prime N, Dufour F, Darve F (2014) Solid–fluid transition modeling in geomaterials and application to a mudflow interacting with an obstable. Int J Numer Anal Methods Geomech 38(13):1341–1361

    Article  Google Scholar 

  56. Prunier F (2008) Modélisation des instabilités en géomécanique, application aux glissements de terrain. Ph.D. thesis, Institut Polytechnique de Grenoble

  57. Prunier F, Laouafa F, Lignon S, Darve F (2009) Bifurcation modelling in geomaterial: from the second-order work criterion to spectral analyses. Int J Numer Anal Methods Geomech 33:1169–1202

    Article  Google Scholar 

  58. Prunier F, Nicot F, Darve F, Laouafa F, Lignon S (2009) Three dimensional multiscale bifurcation analysis of granular media. J Eng Mech 135(6):493–509

    Article  Google Scholar 

  59. Servant G, Darve F, Desrues J, Georgopoulos IO (2005) Diffuse modes of failure in geomaterials. In: Di Benedetto H, Doanh T, Geoffroy H, Sauzeat C (eds) Deformation characteristics of geomaterials. Taylor & Francis, London, pp 181–200

    Google Scholar 

  60. Soga A, Alonso E, Yerro A, Kumar K, Bandara S (2015) Trends in large deformation analysis of landslide mass movement. Geotechnique 00:1–23

    Google Scholar 

  61. Van Eekelen HAM (1980) Isotropic yield surfaces in three dimensions for use in soil mechanics. Int J Numer Anal Methods Geomech 4:89–101

    Article  Google Scholar 

  62. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  63. Varnes D (1954) Landslides and engineering practice. Special report 28, chap. Landslides types and processes, 20–47. Eckel EB

  64. Varnes D (1978) Landslides-analysis and control: National Research Council, Washington, DC, Transportation Research Board. Special Report, chap. Slope movement types and processes, 13–33. Schuster RL and Krizek RJ

  65. Wang GL (2013) Lessons learned from protective measures associated with the 2010 Zhouqu debris flow disaster in China. Nat Hazards 69(3):1835–1847

    Article  Google Scholar 

  66. Xiao H, Luo Z, Niu Q, Chang J (2013) The 2010 Zhouqu mudflow disaster: possible causes, human contributions, and lessons learned. Nat Hazards 67(2):611–625

    Article  Google Scholar 

  67. Xu Q, Peng DL, Li WL, Dong XJ, Hui W, Tang MG, Liu FZ (2017) The catastrophic landfill flowslide at Hongao dumpsite on 20 December 2015 in Shenzhen, China. Nat Hazard Earth Syst (published online)

  68. Yin YP, Li B, Wang WP, Zhan LT, Xue Q, Gao Y, Zhang N, Chen HQ, Liu TK, Li AG (2016) Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization. Engineering 2(2):230–249

    Article  Google Scholar 

  69. Zhang X, Krabbenhoft K, Sheng D, Li W (2015) Numerical simulation of a flow-like landslide using particle finite element method. Comput Mech 55(1):167–177

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the CAS Pioneer Hundred Talents Program and the National Natural Science Foundation of China (Grant No. 41502334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z.H., Jiang, Y.J., Lv, Q. et al. Consistent modeling of a catastrophic flowslide at the Shenzhen landfill using a hydro-elasto-plastic model with solid–fluid transition. Acta Geotech. 13, 1451–1466 (2018). https://doi.org/10.1007/s11440-018-0672-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0672-3

Keywords

Navigation