Skip to main content
Log in

Semiconducting nanocrystals, conjugated polymers, and conjugated polymer/nanocrystal nanohybrids and their usage in solar cells

  • Feature Article
  • Published:
Frontiers of Chemistry in China

Abstract

As one of the major renewable energy sources, solar energy has the potential to become an essential component of future global energy production. With the increasing demand in energy, the harvesting of solar energy using inexpensive materials and manufacturing methods has attracted considerable attention. Organic/inorganic (i.e., conjugated polymer/nanocrystal (CP/NC)) nanohybrid solar cell, including both physically mixed CP/NC composites and covalently linked CP-NC nanocomposites, is one of the several most promising alternative, cost-effective concepts for solar-to-electric energy conversion that has been offered to challenge conventional Si solar cells over the past decade. It has low fabrication cost and capability of large-scale production. However, to date, the highest power conversion efficiency (PCE) of organic/inorganic nanohybrid solar cells has been reported to be only 5.5%, which is still lower than the theoretical prediction of more than 10%. Several problems, i. e., microscopic phase separation of semiconducting CPs and NCs, low charge injection, and low carrier collection, have not been well addressed. More research remains to be done to improve the efficiency of CP/NC nanohybrid solar cells. In this review article, the recent advances in solving these problems were discussed. For the CP/NC solar cells prepared by physically mixing electron donating CP and electron accepting NC (i.e., forming CP/NC composites), methods involving the use of solvent mixtures and ligand modification to control the phase separation at the nanoscale are discussed; the implications of intriguing anisotropic NCs as well as their assemblies (i.e., NC arrays) on improving the charge collection are presented. For newly developed CP/NC solar cells prepared by chemically tethering CP chains on the NC surface (i.e., yielding CP-NC nanocomposites, thereby preventing microscopic phase separation of CP and NC and improving their electronic interaction), recent strategies on the synthesis of such nanocomposites and their photovoltaic performance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schiermeier, Q.; Tollefson, J.; Scully, T.; Witze, A.; Morton, O., Nature 2008, 454, 816–823

    Article  CAS  Google Scholar 

  2. Saunders, B. R.; Turner, M. L., Adv. Colloid Interface Sci. 2008, 138, 1–23

    Article  CAS  Google Scholar 

  3. Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H., Science 1999, 285, 692–698

    Article  CAS  Google Scholar 

  4. Kamat, P. V., J. Phys. Chem. C 2008, 112, 18737–18753

    CAS  Google Scholar 

  5. Manna, L.; Scher, E. C.; Alivisatos, A. P., J. Cluster Sci. 2002, 13, 521–532

    Article  CAS  Google Scholar 

  6. Peng, X. G., Adv. Mater. 2003, 15, 459–463

    Article  CAS  Google Scholar 

  7. Dong, H. X.; Yang, Z.; Yang, W. Y.; Yin, W. Y.; Song, Y. Z.; Yang, H. Q., Prog. Chem. 2006, 18, 1608–1614

    CAS  Google Scholar 

  8. Yu, H.; Li, J. B.; Loomis, R. A.; Gibbons, P. C.; Wang, L. W.; Buhro, W. E., J. Am. Chem. Soc. 2003, 125, 16168–16169

    Article  CAS  Google Scholar 

  9. Wang, F. D.; Buhro, W. E., J. Am. Chem. Soc. 2007, 129, 14381–14387

    Article  CAS  Google Scholar 

  10. Li, L. S.; Alivisatos, A. P., Adv. Mater. 2003, 15, 408

    Article  CAS  Google Scholar 

  11. Ghezelbash, A.; Koo, B.; Korgel, B. A., Nano Lett. 2006, 6, 1832–1836

    Article  CAS  Google Scholar 

  12. Hu, Z. H.; Fischbein, M. D.; Querner, C.; Drndic, M., Nano Lett. 2006, 6, 2585–2591

    Article  CAS  Google Scholar 

  13. Ryan, K. M.; Mastroianni, A.; Stancil, K. A.; Liu, H. T.; Alivisatos, A. P., Nano Lett. 2006, 6, 1479–1482

    Article  CAS  Google Scholar 

  14. Kang, C. C.; Lai, C. W.; Peng, H. C.; Shyue, J. J.; Chou, P. T., Acs Nano 2008, 2, 750–756

    Article  CAS  Google Scholar 

  15. Querner, C.; Fischbein, M. D.; Heiney, P. A.; Drndic, M., Adv. Mater. 2008, 20, 2308

    Article  CAS  Google Scholar 

  16. Coakley, K. M.; McGehee, M. D., Chemistry of Materials 2004, 16, 4533–4542

    Article  CAS  Google Scholar 

  17. Jayadevan, K. P.; Tseng, T. Y., J. Nanosci. Nanotechnol. 2005, 5, 1768–1784

    Article  CAS  Google Scholar 

  18. Ginger, D. S.; Greenham, N. C., Phys. Rev. B: Condens. Matter 1999, 59, 10622–10629

    CAS  Google Scholar 

  19. Campbell, I. H.; Hagler, T. W.; Smith, D. L.; Ferraris, J. P., Phys. Rev. Lett. 1996, 76, 1900–1903

    Article  CAS  Google Scholar 

  20. Alvarado, S. F.; Seidler, P. F.; Lidzey, D. G.; Bradley, D. D. C., Phys. Rev. Lett. 1998, 81, 1082–1085

    Article  CAS  Google Scholar 

  21. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Science 2002, 295, 2425–2427

    Article  CAS  Google Scholar 

  22. Manna, L.; Scher, E. C.; Alivisatos, A. P., J. Am. Chem. Soc. 2000, 122, 12700–12706

    Article  CAS  Google Scholar 

  23. Murray, C. B.; Norris, D. J.; Bawendi, M. G., J. Am. Chem. Soc. 1993, 115, 8706–8715

    Article  CAS  Google Scholar 

  24. Chen, M.; Xie, Y.; Lu, J.; Xiong, Y. J.; Zhang, S. Y.; Qian, Y. T.; Liu, X. M., J. Mater. Chem. 2002, 12, 748–753

    Article  CAS  Google Scholar 

  25. Pradhan, N.; Xu, H. F.; Peng, X. G., Nano Lett. 2006, 6, 720–724

    Article  CAS  Google Scholar 

  26. Yang, J.; Xue, C.; Yu, S. H.; Zeng, J. H.; Qian, Y. T., Angew. Chem. Int. Ed. 2002, 41, 4697–4700

    Article  CAS  Google Scholar 

  27. Zhan, J. H.; Yang, X. G.; Wang, D. W.; Li, S. D.; Xie, Y.; Xia, Y.; Qian, Y. T., Adv. Mater. 2000, 12, 1348–1351

    Article  CAS  Google Scholar 

  28. Duan, X. F.; Lieber, C. M., Adv. Mater. 2000, 12, 298–302

    Article  CAS  Google Scholar 

  29. Gudiksen, M. S.; Lieber, C. M., J. Am. Chem. Soc. 2000, 122, 8801–8802

    Article  CAS  Google Scholar 

  30. Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M., Nature 2001, 409, 66–69

    Article  CAS  Google Scholar 

  31. Fan, H. J.; Werner, P.; Zacharias, M., Small 2006, 2, 700–717

    Article  CAS  Google Scholar 

  32. Peng, Z. A.; Peng, X. G., J. Am. Chem. Soc. 2001, 123, 183–184

    Article  CAS  Google Scholar 

  33. Peng, Z. A.; Peng, X. G., J. Am. Chem. Soc. 2002, 124, 3343–3353

    Article  CAS  Google Scholar 

  34. Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P., Science 2001, 292, 2060–2063

    Article  CAS  Google Scholar 

  35. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Nat. Mater. 2005, 4, 435–446

    Article  CAS  Google Scholar 

  36. Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmuller, A.; Weller, H., J. Phys. Chem. B 2002, 106, 7177–7185

    Article  CAS  Google Scholar 

  37. Zhang, H.; Wang, D.; Mohwald, H., Angew. Chem. Int. Ed. 2006, 45, 6244–6244

    Article  CAS  Google Scholar 

  38. Donega, C. D.; Liljeroth, P.; Vanmaekelbergh, D., Small 2005, 1, 1152–1162

    Article  CAS  Google Scholar 

  39. Wang, Y.; Herron, N., J. Phys. Chem. 1991, 95, 525–532

    Article  CAS  Google Scholar 

  40. Xu, J.; Wang, J.; Mitchell, M.; Mukherjee, P.; Jeffries-EL, M.; Petrich, J.W.; Lin, Z. Q., J. Am. Chem. Soc. 2007, 129, 12828–12833

    Article  CAS  Google Scholar 

  41. Skaff, H.; Sill, K.; Emrick, T., J. Am. Chem. Soc. 2004, 126, 11322–11325

    Article  CAS  Google Scholar 

  42. Schaller, R. D.; Agranovich, V. M.; Klimov, V. I., Nat. Phys. 2005, 1, 189–194

    Article  CAS  Google Scholar 

  43. Schaller, R. D.; Klimov, V. I., Phys. Rev. Lett. 2004, 92

  44. Schaller, R. D.; Sykora, M.; Pietryga, J. M.; Klimov, V. I., Nano Lett. 2006, 6, 424–429

    Article  CAS  Google Scholar 

  45. Luque, A.; Marti, A.; Nozik, A. J., MRS Bull. 2007, 32, 236–241

    CAS  Google Scholar 

  46. Luther, J. M.; Beard, M. C.; Song, Q.; Law, M.; Ellingson, R. J.; Nozik, A. J., Nano Lett. 2007, 7, 1779–1784

    Article  CAS  Google Scholar 

  47. Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Ellingson, R. J.; et al., J. Am. Chem. Soc. 2006, 128, 3241–3247

    Article  CAS  Google Scholar 

  48. Beard, M. C.; Knutsen, K. P.; Yu, P. R.; Luther, J. M.; Song, Q.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J., Nano Lett. 2007, 7, 2506–2512

    Article  CAS  Google Scholar 

  49. Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L., Nano Lett. 2005, 5, 865–871

    Article  CAS  Google Scholar 

  50. Pijpers, J. J. H.; Hendry, E.; Milder, M. T. W.; Fanciulli, R.; Savolainen, J.; Herek, J. L.; Vanmaekelbergh, D.; Ruhman, S.; et al., J. Phys. Chem. C 2007, 111, 4146–4152

    Article  CAS  Google Scholar 

  51. Schaller, R. D.; Sykora, M.; Jeong, S.; Klimov, V. I., J. Phys. Chem. B 2006, 110, 25332–25338

    Article  CAS  Google Scholar 

  52. Shabaev, A.; Efros, A. L.; Nozik, A. J., Nano Lett. 2006, 6, 2856–2863

    Article  CAS  Google Scholar 

  53. Trinh, M. T.; Houtepen, A. J.; Schins, J. M.; Hanrath, T.; Piris, J.; Knulst, W.; Goossens, A. P. L. M.; Siebbeles, L. D. A., Nano Lett. 2008, 8, 1713–1718

    Article  Google Scholar 

  54. Franceschetti, A.; Zhang, Y., Phys. Rev. Lett. 2008, 100

  55. Guyot-Sionnest, P., Nat. Mater. 2005, 4, 653–654

    Article  CAS  Google Scholar 

  56. Schaller, R. D.; Petruska, M. A.; Klimov, V. I., Appl. Phys. Lett. 2005, 87

  57. Fu, A. H.; Gu, W. W.; Boussert, B.; Koski, K.; Gerion, D.; Manna, L.; Le Gros, M.; Larabell, C. A.; et al., Nano Lett. 2007, 7, 179–182

    Article  CAS  Google Scholar 

  58. Kang, Y. M.; Park, N. G.; Kim, D., Appl. Phys. Lett. 2005, 86

  59. Zhang, Q. L.; Gupta, S.; Emrick, T.; Russell, T. P., J. Am. Chem. Soc. 2006, 128, 3898–3899

    Article  CAS  Google Scholar 

  60. Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P., Nano Lett. 2001, 1, 349–351

    Article  CAS  Google Scholar 

  61. Agrawal, G. P.; Cojan, C.; Flytzanis, C., Phys. Rev. Lett. 1977, 38, 711–715

    Article  CAS  Google Scholar 

  62. Nunzi, J. M., Comptes Rendus Physique 2002, 3, 523–542

    Article  CAS  Google Scholar 

  63. Kim, Y. G.; Thompson, B. C.; Ananthakrishnan, N.; Padmanaban, G.; Ramakrishnan, S.; Reynolds, J. R., J. Mater. Res. 2005, 20, 3188–3198

    Article  CAS  Google Scholar 

  64. Coakley, K. M.; Liu, Y. X.; McGehee, M. D.; Frindell, K. L.; Stucky, G. D., Adv. Funct. Mater. 2003, 13, 301–306

    Article  CAS  Google Scholar 

  65. Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; et al., Nat. Mater. 2006, 5, 197–203

    Article  CAS  Google Scholar 

  66. Wang, G. M.; Swensen, J.; Moses, D.; Heeger, A. J., J. Appl. Phys. 2003, 93, 6137–6141

    Article  CAS  Google Scholar 

  67. Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C., Appl. Phys. Lett. 1998, 72, 519–521

    Article  CAS  Google Scholar 

  68. Pschenitzka, F.; Sturm, J. C., Appl. Phys. Lett. 1999, 74, 1913–1915

    Article  CAS  Google Scholar 

  69. Rogers, J. A.; Bao, Z. N.; Raju, V. R., Appl. Phys. Lett. 1998, 72, 2716–2718

    Article  CAS  Google Scholar 

  70. Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Appl. Phys. Lett. 1996, 68, 3120–3122

    Article  CAS  Google Scholar 

  71. Pei, Q. B.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J., Science 1995, 269, 1086–1088

    Article  CAS  Google Scholar 

  72. Yamamoto, T.; Morita, A.; Miyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.; Nakamura, Y.; Kanbara, T.; et al., Macromolecules 1992, 25, 1214–1223

    Article  CAS  Google Scholar 

  73. Gross, M.; Muller, D. C.; Nothofer, H. G.; Scherf, U.; Neher, D.; Brauchle, C.; Meerholz, K., Nature 2000, 405, 661–665

    Article  CAS  Google Scholar 

  74. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J. et al., Nature 1999, 401, 685–688

    Article  CAS  Google Scholar 

  75. Zhang, R.; Li, B.; Iovu, M. C.; Jeffries-EL, M.; Sauve, G.; Cooper, J.; Jia, S. J.; Tristram-Nagle, S.; et al., J. Am. Chem. Soc. 2006, 128, 3480–3481

    Article  CAS  Google Scholar 

  76. Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J. S.; Frechet, J. M. J., Adv. Mater. 2003, 15, 1519

    Article  CAS  Google Scholar 

  77. Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.; Asawapirom, U.; Rabe, J. P.; Scherf, U.; Neher, D., Adv. Funct. Mater. 2004, 14, 757–764

    Article  CAS  Google Scholar 

  78. Kline, R. J.; Mcgehee, M. D.; Toney, M. F., Nat. Mater. 2006, 5, 222–228

    Article  CAS  Google Scholar 

  79. Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J. S.; Frechet, J. M. J.; Toney, M. F., Macromolecules 2005, 38, 3312–3319

    Article  CAS  Google Scholar 

  80. Chang, J. F.; Sun, B. Q.; Breiby, D. W.; Nielsen, M. M.; Solling, T. I.; Giles, M.; McCulloch, I.; Sirringhaus, H., Chem. Mater. 2004, 16, 4772–4776

    Article  CAS  Google Scholar 

  81. Bao, Z.; Lovinger, A. J.; Dodabalapur, A., Appl. Phys. Lett. 1996, 69, 3066–3068

    Article  CAS  Google Scholar 

  82. Yang, C. M.; Wu, C. H.; Liao, H. H.; Lai, K. Y.; Cheng, H. P.; Horng, S. F.; Meng, H. F.; Shy, J. T., Appl. Phys. Lett. 2007, 90

  83. Greenham, N. C.; Peng, X. G.; Alivisatos, A. P., Phys. Rev. B: Condens. Matter 1996, 54, 17628–17637

    CAS  Google Scholar 

  84. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J., Adv. Mater. 2003, 15, 58

    Article  CAS  Google Scholar 

  85. Milliron, D. J.; Gur, I.; Alivisatos, A. P., MRS Bull. 2005, 30, 41–44

    CAS  Google Scholar 

  86. Odoi, M. Y.; Hammer, N. I.; Sill, K.; Emrick, T.; Barnes, M. D., J. Am. Chem. Soc. 2006, 128, 3506–3507

    Article  CAS  Google Scholar 

  87. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P., Nature 1994, 370, 354–357

    Article  CAS  Google Scholar 

  88. Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V., Nature 2002, 420, 800–803

    Article  CAS  Google Scholar 

  89. Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F., Adv. Mater. 2000, 12, 1102

    Article  CAS  Google Scholar 

  90. Huynh, W. U.; Dittmer, J. J.; Libby, W. C.; Whiting, G. L.; Alivisatos, A. P., Adv. Funct. Mater. 2003, 13, 73–79

    Article  CAS  Google Scholar 

  91. Aldakov, D.; Chandezon, F.; De Bettignies, R.; Firon, M.; Reiss, P.; Pron, A., Eur. Phys. J. Appl. Phys. 2006, 36, 261–265

    Article  CAS  Google Scholar 

  92. Olson, J. D.; Gray, G. P.; Carter, S. A., Sol. Energy Mater. Sol. Cells 2009, 93, 519–523

    Article  CAS  Google Scholar 

  93. Schierhorn, M.; Boettcher, S.W.; Ivanovskaya, A.; Norvell, E.; Sherman, J. B.; Stucky, G. D.; Moskovits, M., J. Phys. Chem. C 2008, 112, 8516–8520

    Article  CAS  Google Scholar 

  94. Huynh, W. U.; Peng, X. G.; Alivisatos, A. P., Adv. Mater. 1999, 11, 923

    Article  CAS  Google Scholar 

  95. Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X. N.; Janssen, R. A. J., J. Phys. Chem. B 2005, 109, 9505–9516

    Article  CAS  Google Scholar 

  96. Sun, B. Q.; Marx, E.; Greenham, N. C., Nano Lett. 2003, 3, 961–963

    Article  CAS  Google Scholar 

  97. Gur, I.; Fromer, N. A.; Alivisatos, A. P., J. Phys. Chem. B 2006, 110, 25543–25546

    Article  CAS  Google Scholar 

  98. Kang, Y.; Kim, D., Sol. Energy Mater. Sol. Cells 2006, 90, 166–174

    Article  CAS  Google Scholar 

  99. Peiro, A. M.; Ravirajan, P.; Govender, K.; Boyle, D. S.; O’Brien, P.; Bradley, D. D. C.; Nelson, J.; Durrant, J. R., J. Mater. Chem. 2006, 16, 2088–2096

    Article  CAS  Google Scholar 

  100. Bartholomew, G. P.; Heeger, A. J., Adv. Funct. Mater. 2005, 15, 677–682

    Article  CAS  Google Scholar 

  101. Lin, Z. Q., Chem. Eur. J. 2008, 14, 6294–6301

    Article  CAS  Google Scholar 

  102. Querner, C.; Reiss, P.; Bleuse, J.; Pron, A., J. Am. Chem. Soc. 2004, 126, 11574–11582

    Article  CAS  Google Scholar 

  103. Querner, C.; Reiss, P.; Sadki, S.; Zagorska, M.; Pron, A., PCCP 2005, 7, 3204–3209

    CAS  Google Scholar 

  104. Zhang, Q. L.; Russell, T. P.; Emrick, T., Chem. Mater. 2007, 19, 3712–3716

    Article  CAS  Google Scholar 

  105. Querner, C.; Benedetto, A.; Demadrille, R.; Rannou, P.; Reiss, P., Chem. Mater. 2006, 18, 4817–4826

    Article  CAS  Google Scholar 

  106. Fang, C.; Qi, X. Y.; Fan, Q. L.; Wang, L. H.; Huang, W., Nanotechnology 2007, 18, 35704

    Article  CAS  Google Scholar 

  107. Liu, J. S.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Frechet, J. M. J., J. Am. Chem. Soc. 2004, 126, 6550–6551

    Article  CAS  Google Scholar 

  108. Locklin, J.; Patton, D.; Deng, S. X.; Baba, A.; Millan, M.; Advincula, R. C., Chem. Mater. 2004, 16, 5187–5193

    Article  CAS  Google Scholar 

  109. Advincula, R. C., Dalton Trans. 2006, 2778–2784.

  110. Kalyuzhny, G.; Murray, R. W., J. Phys. Chem. B 2005, 109, 7012–7021

    Article  CAS  Google Scholar 

  111. Komoto, A.; Maenosono, S.; Yamaguchi, Y., Langmuir 2004, 20, 8916–8923

    Article  CAS  Google Scholar 

  112. Goodman, M. D.; Xu, J.; Wang, J.; Lin, Z. Q., Chem. Mater. 2009, 21, 934–938

    Article  CAS  Google Scholar 

  113. Tan, Z.; Hou, J. H.; He, Y. J.; Zhou, E. J.; Yang, C. H.; Li, Y. F., Macromolecules 2007, 40, 1868–1873

    Article  CAS  Google Scholar 

  114. Spanggaard, H.; Krebs, F. C., Sol. Energy Mater. Sol. Cells 2004, 83, 125–146

    Article  CAS  Google Scholar 

  115. Possamai, G.; Maggini, M.; Menna, E.; Scorrano, G.; Franco, L.; Ruzzi, M.; Corvaja, C.; Ridolfi, G.; Samori, P.; Geri, A.; Camaioni, N., Appl. Phys. A 2004, 79, 51–58

    Article  CAS  Google Scholar 

  116. Sun, X. B.; Zhou, Y. H.; Wu, W. C.; Liu, Y. Q.; Tian, W. J.; Yu, G.; Qiu, W. F.; Chen, S. Y.; Zhu, D. B., J. Phys. Chem. B 2006, 110, 7702–7707

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Lin.

About this article

Cite this article

Zhao, L., Wang, J. & Lin, Z. Semiconducting nanocrystals, conjugated polymers, and conjugated polymer/nanocrystal nanohybrids and their usage in solar cells. Front. Chem. China 5, 33–44 (2010). https://doi.org/10.1007/s11458-009-0112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-009-0112-x

Keywords

Navigation