Skip to main content
Log in

Dimension-Free Harnack Inequality and its Applications

  • Survey Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

This paper presents a self-contained account concerning a dimension-free Harnack inequality and its applications. This new type of inequality not only implies heat kernel bounds as the classical Li-Yau’s Harnack inequality did, but also provides a direct way to describe various dimension-free properties of finite and infinite-dimensional diffusion semigroups. The author starts with a standard weighted Laplace operator on a Riemannian manifold with curvature bounded from below, and then move further to the unbounded below curvature case and its infinite-dimensional settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aida S., Uniformly positivity improving property, Sobolev inequalities and spectral gaps, J. Funct. Anal., 1998, 158:152–185

    Article  MATH  MathSciNet  Google Scholar 

  2. Aida S. and Kawabi H., Short time asymptotics of certain infinite dimensional diffusion process, Stochastic Analysis and Related Topics, VII, Kusadasi, Japan, 1998, 77–124

  3. Aida S. and Zhang T., On the small time asymptotics of diffusion processes on path groups, Potential Anal., 2002, 16:67–78

    Article  MathSciNet  Google Scholar 

  4. Arnaudon M., Thalmaier A. and Wang F.-Y., Harnack inequality and heat kernel estimate on manifolds with curvature unbounded below, Bull. Sci. Math., in press.

  5. Aronson D. G., The porous medium equation, Lecture Notes Math., 1986, 1224: 1–46

    MATH  MathSciNet  Google Scholar 

  6. Bakry D., On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, in: Elworthy K. D., Kusuoka S. and Shigekawa I., eds., New Trends in Stochastic Analysis, Singapore: World Scientific, 1997

  7. Bakry D. and Qian Z.-M., Harnack inequalities on a manifold with positive or negative Ricci curvature, Rev. Mat. Iberoam., 1999, 15: 143–179

    MathSciNet  Google Scholar 

  8. Bendikov A. and Maheux P., Nash type inequalities for fractional powers of nonnegative self-adjoint operators, preprint, http://hal.ccsd.cnrs.fr/ccsd-00001228

  9. Bobkov S. G., Gentil I. and Ledoux M., Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl., 2001, 80(7): 669–696

    Article  MathSciNet  Google Scholar 

  10. Bobkov S. G. and Götze F., Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., 1999, 163: 1–28

    Article  MathSciNet  Google Scholar 

  11. Chen M.-F., Variational formulas of Poincaré-type inequalities in Banach spaces of functions on the line, Acta Math. Sin. (N.S.), 2002, 18: 417–436

    MATH  Google Scholar 

  12. Chen M.-F., Eigenvalues, Inequalities, and Ergodic Theory, London: Springer-Verlag, 2004

    Google Scholar 

  13. Chen M.-F., Capacitary criteria for Poincaré-type inequalities, Potential Anal., 2005, 23: 303–322

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen M.-F. and Wang F.-Y., Application of coupling method to the first eigenvalue on manifold, Sci. Sin. A, 1994, 37(1): 1–14

    Google Scholar 

  15. Coulhon T. and Duong X. T., Riesz transforms for 1≤p≤2, Trans. Am. Math. Soc., 1999, 351(3): 1151–1169

    Article  MathSciNet  Google Scholar 

  16. Cranston M., Gradient estimates on manifolds using coupling, J. Funct. Anal., 1991, 99: 110–124

    Article  MATH  MathSciNet  Google Scholar 

  17. Davies E. B., Heat Kernels and Spectral Theory, Cambridge: Cambridge University Press, 1989

    Google Scholar 

  18. Davies E. B. and Simon B., Ultracontractivity and heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal., 1984, 59: 335–395

    Article  MathSciNet  Google Scholar 

  19. Gong F.-Z. and Wang F.-Y., Heat kernel estimates with application to compactness of manifolds, Q. J. Math., 2001, 52: 171–180

    MathSciNet  Google Scholar 

  20. Gong F.-Z. and Wang F.-Y., On Gromov’s theorem and L 2-Hodge decomposition, Int. Math. Math. Sci., 2004, 2004(1): 25–44

    MathSciNet  Google Scholar 

  21. Gross L., Logarithmic Sobolev inequalities, Am. J. Math., 1976, 97: 1061–1083

    MATH  Google Scholar 

  22. Grigor’yan A., Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differ. Geom., 1997, 45: 33–52

    MathSciNet  Google Scholar 

  23. Kawabi H., The parabolic Harnack inequality for the time dependent Ginzburg-Landau type SPDE and its application, Potential Anal., 2005, 22: 61–84

    MATH  MathSciNet  Google Scholar 

  24. Kendall W. S., Nonnegative Ricci curvature and the Brownian coupling property, Stochastics, 1986, 19: 111–129

    MATH  MathSciNet  Google Scholar 

  25. Krylov N. V. and Rozovskii B. L., Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki, Plenum, 1979, 14: 71–146

    MathSciNet  Google Scholar 

  26. Li P. and Yau S.-T., On the parabolic kernel of the Schrödinger operator, Acta Math., 1986, 156: 153–201

    MathSciNet  Google Scholar 

  27. Li X.-M. and Wang F.-Y., On compactness of Riemannian manifolds, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2003, 6(1): 29–38

    Google Scholar 

  28. Röckner M. and Wang F.-Y., Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds, Forum Math., 2003, 15: 893–921

    MathSciNet  Google Scholar 

  29. Röckner M. and Wang F.-Y., Harnack and functional inequalities for generalized Mehler semigroups, J. Funct. Anal., 2003, 203: 237–261

    MathSciNet  Google Scholar 

  30. Villani C., Topics in Mass Transportation, Providence, RI: Am. Math. Soc., 2003

    Google Scholar 

  31. Wang F.-Y., Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Relat. Fields, 1997, 109: 417–424

    MATH  Google Scholar 

  32. Wang F.-Y., Harnack inequalities for log-Sobolev functions and estimates of log-Sobolev constants, Ann. Probab., 1999, 27: 653–663

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang F.-Y., Functional inequalities for empty essential spectrum, J. Funct. Anal., 2000, 170: 219–245

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang F.-Y., Functional inequalities, semigroup properties and spectrum estimates, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2000, 3: 263–295

    MathSciNet  Google Scholar 

  35. Wang F.-Y., Logarithmic Sobolev inequalities: conditions and counterexamples, J. Operator Theory, 2001, 46: 183–197

    MathSciNet  Google Scholar 

  36. Wang F.-Y., Functional inequalities and spectrum estimates: the infinite measure case, J. Funct. Anal., 2002, 194: 288–310

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang F.-Y., Equivalence of dimension-free Harnack inequality and curvature condition, Integr. Equ. Oper. Theory, 2004, 48: 547–552

    Article  MATH  Google Scholar 

  38. Wang F.-Y., Functional Inequalities, Markov Properties, and Spectral Theory, Beijing: Science Press, 2005

    Google Scholar 

  39. Wang F.-Y., Harnack Inequality and Applications for Stochastic Generalized Porous Media and Fast Diffusion Equations, preprint.

  40. Wu L., Uniformly integrable operators and large deviations for Markov processes, J. Funct. Anal., 2000, 172: 301–376

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Feng-Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, FY. Dimension-Free Harnack Inequality and its Applications. Front. Math. China 1, 53–72 (2006). https://doi.org/10.1007/s11464-005-0021-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-005-0021-3

Keywords

AMS Subject Classification

Navigation