Skip to main content
Log in

Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models

  • Survey Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Recent advances in abstract local and global bifurcation theory is briefly reviewed. Several applications are included to illustrate the applications of abstract theory, and it includes Turing instability of chemical reactions, pattern formation in water limited ecosystems, and diffusive predator-prey models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A, Prodi G. A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, Vol 34. Cambridge: Cambridge University Press, 1995

    Google Scholar 

  2. Cantrell R S, Cosner C. Spatial Ecology via Reaction-diffusion Equation. Wiley Series in Mathematical and Computational Biology. New York: John Wiley & Sons Ltd, 2003

    Google Scholar 

  3. Chang K -C. Methods in Nonlinear Analysis. Springer Monographs in Mathematics. Berlin: Springer-Verlag, 2005

    Google Scholar 

  4. Cheng K S. Uniqueness of a limit cycle for a predator-prey system. SIAM J Math Anal, 1981, 12(4): 541–548

    Article  MathSciNet  MATH  Google Scholar 

  5. Chow S N, Hale J K. Methods of Bifurcation Theory. New York-Berlin: Springer-Verlag, 1982

    MATH  Google Scholar 

  6. Conway E D. Diffusion and predator-prey interaction: pattern in closed systems. In: Fitzgibbon W E, ed. Partial Differential Equations and Dynamical Systems. Res Notes in Math, Vol 101. Boston-London: Pitman, 1984, 85–133

    Google Scholar 

  7. Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. Jour Func Anal, 1971, 8: 321–340

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch Rational Mech Anal, 1973, 52: 161–180

    Article  MathSciNet  MATH  Google Scholar 

  9. De Kepper P, Castets V, Dulos E, Boissonade J. Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D, 1991, 49: 161–169

    Article  Google Scholar 

  10. Deimling K. Nonlinear Functional Analysis. Berlin-New York: Springer-Verlag, 1985

    MATH  Google Scholar 

  11. Du Y H, Shi J P. Some recent results on diffusive predator-prey models in spatially heterogeneous environment. In: Brunner H, Zhao X Q, Zou X F, eds. Nonlinear Dynamics and Evolution Equations. Fields Institute Communications, 48. Providence: American Mathematical Society, 2006, 95–135

    Google Scholar 

  12. Epstein I R, Pojman J A. An Introduction to Nonlinear Chemical Dynamics. Oxford: Oxford University Press, 1998

    Google Scholar 

  13. Gray P, Scott S K. Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics. Oxford: Clarendon Press, 1990

    Google Scholar 

  14. Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories. Jour Sound and Vibr, 1999, 225(5): 935–988

    Article  Google Scholar 

  15. Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Vol 840. Berlin-New York: Springer-Verlag, 1981

    MATH  Google Scholar 

  16. Hsu S -B. Ordinary Differential Equations with Applications. Series on Applied Mathematics, 16. Hackensack: World Scientific Publishing Co Pte Ltd, 2006

    MATH  Google Scholar 

  17. Hsu S-B, Shi J P. Relaxation oscillator profile of limit cycle in predator-prey system. Disc Cont Dyns Syst -B (to appear)

  18. Jang J, Ni W -M, Tang M X. Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model. J Dynam Differential Equations, 2004, 16(2): 297–320

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang J F, Shi J P. Bistability dynamics in some structured ecological models. In: Spatial Ecology: A Collection of Essays. Boca Raton: CRC Press, 2009 (in press)

    Google Scholar 

  20. Kielhöfer H. Bifurcation Theory. An Introduction with Applications to PDEs. Applied Mathematical Sciences, Vol 156. New York: Springer-Verlag, 2004

    Google Scholar 

  21. Lengyel I, Epstein I R. Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system. Science, 1991, 251: 650–652

    Article  Google Scholar 

  22. Lengyel I, Epstein I R. A chemical approach to designing Turing patterns in reaction-diffusion system. Proc Natl Acad Sci USA, 1992, 89: 3977–3979

    Article  MATH  Google Scholar 

  23. Liu P, Shi J P, Wang Y W. Imperfect transcritical and pitchfork bifurcations. Jour Func Anal, 2007, 251(2): 573–600

    Article  MathSciNet  MATH  Google Scholar 

  24. López-Gómez J. Spectral Theory and Nonlinear Functional Analysis. Chapman & Hall/CRC Research Notes in Mathematics, Vol 426. Boca Raton: Chapman & Hall/CRC, 2001

    MATH  Google Scholar 

  25. Medvinsky A B, Petrovskii S V, Tikhonova I A, Malchow H, Li B -L. Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev, 2002, 44(3): 311–370

    Article  MathSciNet  MATH  Google Scholar 

  26. Meron E, Gilad E, von Hardenberg J, Shachak M, Zarmi Y. Vegetation patterns along a rainfall gradient. Chaos Solitons Fractals, 2004, 19: 367–376

    Article  MATH  Google Scholar 

  27. Murray J D. Mathematical Biology. I. An Introduction. 3rd Ed. Interdisciplinary Applied Mathematics, Vol 17. New York: Springer-Verlag, 2003

    Google Scholar 

  28. Murray J D. Mathematical Biology. II. Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, Vol 18. New York: Springer-Verlag, 2003

    Google Scholar 

  29. Ni W -M, Tang M X. Turing patterns in the Lengyel-Epstein system for the CIMA reaction. Trans Amer Math Soc, 2005, 357(10): 3953–3969

    Article  MathSciNet  MATH  Google Scholar 

  30. Nirenberg L. Topics in Nonlinear Functional Analysis. Courant Lecture Notes in Mathematics, Vol 6. New York University, Courant Institute of Mathematical Sciences, New York. Providence: American Mathematical Society, 2001

    MATH  Google Scholar 

  31. Nishiura Y. Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J Math Anal, 1982, 13(4): 555–593

    Article  MathSciNet  MATH  Google Scholar 

  32. Okubo A, Levin S. Diffusion and Ecological Problems: Modern Perspectives. 2nd Ed. Interdisciplinary Applied Mathematics, Vol 14. New York: Springer-Verlag, 2001

    Google Scholar 

  33. Pejsachowicz J, Rabier P J. Degree theory for C 1 Fredholm mappings of index 0. J Anal Math, 1998, 76: 289–319

    Article  MathSciNet  MATH  Google Scholar 

  34. Rabinowitz P H. Some global results for nonlinear eigenvalue problems. Jour Func Anal, 1971, 7: 487–513

    Article  MathSciNet  MATH  Google Scholar 

  35. Reiss E L. Column buckling—an elementary example of bifurcation. In: Keller J B, Antman S, eds. Bifurcation Theory and Nonlinear Eigenvalue Problems. New York-Amsterdam: W A Benjamin, Inc, 1969, 1–16

    Google Scholar 

  36. Reiss E L. Imperfect bifurcation. In: Applications of Bifurcation Theory (Proc Advanced Sem, Univ Wisconsin, Madison, Wis, 1976). Publ Math Res Center Univ Wisconsin, No 38. New York: Academic Press, 1977, 37–71

    Google Scholar 

  37. Rosenzweig M L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 1971, 171(3969): 385–387

    Article  Google Scholar 

  38. Shi J P. Persistence and bifurcation of degenerate solutions. Jour Func Anal, 1999, 169(2): 494–531

    Article  MATH  Google Scholar 

  39. Shi J P. Solution Set of Semilinear Elliptic Equations: Global Bifurcation and Exact Multiplicity. Singapore: World Scientific Publishing Co Pte Ltd, 2009

    Google Scholar 

  40. Shi J P, Wang X F. On global bifurcation for quasilinear elliptic systems on bounded domains. Jour Diff Equations, 2009, 246(7): 2788–2812

    Article  MathSciNet  MATH  Google Scholar 

  41. Timosehnko S P. History of Strength of Materials. New York: Dover Publications, Inc, 1953

    Google Scholar 

  42. Turing A M. The chemical basis of morphogenesis. Philosophical Transaction of Royal Society of London, 1952, B237: 37–72

    Article  Google Scholar 

  43. von Hardenberg J, Meron E, Shachak M, Zarmi Y. Diversity of vegetation patterns and desertification. Phys Rev Lett, 2001, 87: 198101

    Google Scholar 

  44. Yi F Q, Wei J J, Shi J P. Diffusion-driven instability and bifurcation in the Lengyel-Epstein system. Nonlinear Anal Real World Appl, 2008, 9(3): 1038–1051

    Article  MathSciNet  MATH  Google Scholar 

  45. Yi F Q, Wei J J, Shi J P. Bifurcation and spatio-temporal patterns in a diffusive homogenous predator-prey system. Jour Diff Equations, 2009, 246(5): 1944–1977

    Article  MathSciNet  MATH  Google Scholar 

  46. Yi F Q, Wei J J, Shi J P. Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system. Appl Math Lett, 2009, 22(1): 52–55

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J. Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models. Front. Math. China 4, 407–424 (2009). https://doi.org/10.1007/s11464-009-0026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-009-0026-4

Keywords

MSC

Navigation