Skip to main content
Log in

Ergodicity of transition semigroups for stochastic fast diffusion equations

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

In this paper, we first show the uniqueness of invariant measures for the stochastic fast diffusion equation, which follows from an obtained new decay estimate. Then we establish the Harnack inequality for the stochastic fast diffusion equation with nonlinear perturbation in the drift and derive the heat kernel estimate and ultrabounded property for the associated transition semigroup. Moreover, the exponential ergodicity and the existence of a spectral gap are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnaudon M, Thalmaier A, Wang F Y. Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull Sci Math, 2006, 130: 223–233

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbu V, Da Prato G. Invariant measures and the Kolmogorov equation for the stochastic fast diffusion equation. Stoc Proc Appl, 2010, 120: 1247–1266

    Article  MATH  Google Scholar 

  3. Bendikov A, Maheux P. Nash type inequalities for fractional powers of nonnegative self-adjoint operators. Trans Amer Math Soc, 2007, 359: 3085–3097

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogachev V I, Da Prato G, Röckner M. Invariant measures of generalized stochastic porous medium equations. Dokl Math, 2004, 69: 321–325

    MATH  Google Scholar 

  5. Bogachev V I, Röckner M, Zhang T S. Existence and uniqueness of invariant measures: an approach via sectorial forms. Appl Math Optim, 2000, 41: 87–109

    Article  MathSciNet  MATH  Google Scholar 

  6. Croke C B. Some isoperimetric inequalities and eigenvalue estimates. Ann Sci éc Norm Super, 1980, 13: 419–435

    MathSciNet  MATH  Google Scholar 

  7. Da Prato G, Röckner M, Rozovskii B L, Wang F Y. Strong solutions to stochastic generalized porous media equations: existence, uniqueness and ergodicity. Comm Part Diff Equ, 2006, 31: 277–291

    Article  MATH  Google Scholar 

  8. Da Prato G, Röckner M, Wang F Y. Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. J Funct Anal, 2009, 257: 992–1017

    Article  MathSciNet  MATH  Google Scholar 

  9. Da Prato G, Zabczyk J. Ergodicity for Infinite-dimensional Systems. London Mathematical Society Lecture Note Series, 229. Cambridge: Cambridge University Press, 1996

    Book  MATH  Google Scholar 

  10. Daskalopoulos P, Kenig C E. Degenerate Diffusions: Initial Value Problems and Local Regularity Theory. EMS Tracts in Mathematics 1. Zürich: European Mathematical Society, 2007

    Book  MATH  Google Scholar 

  11. Doob J L. Asymptotics properties of Markov transition probabilities. Trans Amer Math Soc, 1948, 63: 393–421

    MathSciNet  MATH  Google Scholar 

  12. Driver B, Gordina M. Integrated Harnack inequalities on Lie groups. J Diff Geom, 2009, 83: 501–550

    MathSciNet  MATH  Google Scholar 

  13. Gess B, Liu W, Röckner M. Random attractors for a class of stochastic partial differential equations driven by general additive noise. J Differential Equations, 2011, doi: 10.1016/j.jde.2011.02.013

  14. Goldys B, Maslowski B. Exponential ergodicity for stochastic reaction-diffusion equations. In: Lecture Notes Pure Appl Math, Vol 245. Boca Raton: Chapman Hall/CRC Press, 2004, 115–131

    Google Scholar 

  15. Goldys B, Maslowski B. Lower estimates of transition densities and bounds on exponential ergodicity for stochastic PDE’s. Ann Probab, 2006, 34: 1451–1496

    Article  MathSciNet  MATH  Google Scholar 

  16. Gong F Z, Wang F Y. Heat kernel estimates with application to compactness of manifolds. Q J Math, 2001, 52(2): 171–180

    Article  MathSciNet  MATH  Google Scholar 

  17. Gyöngy I. On stochastic equations with respect to semimartingale III. Stochastics, 1982, 7: 231–254

    MathSciNet  Google Scholar 

  18. Hairer M. Coupling stochastic PDEs. In: XIVth International Congress on Mathematical Physics, 2005, 281–289

  19. Krylov N V, Rozovskii B L. Stochastic evolution equations. Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki, 1979, 14: 71–146

    MathSciNet  Google Scholar 

  20. Liu W. Harnack inequality and applications for stochastic evolution equations with monotone drifts. J Evol Equ, 2009, 9: 747–770

    Article  MathSciNet  Google Scholar 

  21. Liu W. On the stochastic p-Laplace equation. J Math Anal Appl, 2009, 360: 737–751

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu W. Large deviations for stochastic evolution equations with small multiplicative noise. Appl Math Optim, 2010, 61: 27–56

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu W, Röckner M. SPDE in Hilbert space with locally monotone coefficients. J Funct Anal, 2010, 259: 2902–2922

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu W, Tölle J M. Existence and uniqueness of invariant measures for stochastic evolution equations with weakly dissipative drifts. Preprint

  25. Liu W, Wang F Y. Harnack inequality and Strong Feller property for stochastic fast diffusion equations. J Math Anal Appl, 2008, 342: 651–662

    Article  MathSciNet  MATH  Google Scholar 

  26. Pardoux E. Equations aux dérivées partielles stochastiques non linéaires monotones. Thesis, Université Paris XI, 1975

  27. Pardoux E. Stochastic partial differential equations and filtering of diffusion processes. Stochastics, 1979, 3: 127–167

    MathSciNet  MATH  Google Scholar 

  28. Ren J, Röckner M, Wang F Y. Stochastic generalized porous media and fast diffusion equations. J Differential Equations, 2007, 238: 118–152

    Article  MathSciNet  MATH  Google Scholar 

  29. Röckner M, Wang F Y. Non-monotone stochastic porous media equation. J Differential Equations, 2008, 245: 3898–3935

    Article  MathSciNet  MATH  Google Scholar 

  30. Seidler J. Ergodic behaviour of stochastic parabolic equations. Czechoslovak Math J, 1997, 47: 277–316

    Article  MathSciNet  MATH  Google Scholar 

  31. Vázquez J L. Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Oxford Lecture Notes in Mathematics and Its Applications, Vol 33. Oxford: Oxford University Press, 2006

    Book  MATH  Google Scholar 

  32. Wang F Y. Functional inequalities, semigroup properties and spectrum estimates. Infin Dimens Anal Quant Probab Relat Top, 2000, 3: 263–295

    MATH  Google Scholar 

  33. Wang F Y. Dimension-free Harnack inequality and its applications. Front Math China, 2006, 1: 53–72

    Article  MathSciNet  Google Scholar 

  34. Wang F Y. Harnack inequality and applications for stochastic generalized porous media equations. Ann Probab, 2007, 35: 1333–1350

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang F Y. Harnack Inequalities on Manifolds with Boundary and Applications. J Math Pures Appl, 2010, 94: 304–321

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang X. On stochastic evolution equations with non-Lipschitz coefficients. Stoch Dyn, 2009, 9: 549–595

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W. Ergodicity of transition semigroups for stochastic fast diffusion equations. Front. Math. China 6, 449–472 (2011). https://doi.org/10.1007/s11464-011-0112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-011-0112-2

Keywords

MSC

Navigation