Skip to main content
Log in

Chemically decorated boron-nitride nanoribbons

  • Research Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

Motivated by recent studies of graphenen nanoribbons (GNRs), we explored electronic properties of pure and chemically modified boron nitride nanoribbons (BNNRs) using the density functional theory method. Pure BNNRs with both edges fully saturated by hydrogen are semiconducting with wide band gaps. Values of the band gap depend on the width and the type of edge. The chemical decoration of BNNRs’ edges with four different functional groups, including -F, -Cl, -OH, and -NO2, was investigated. The band-gap modulation by chemical decoration may be exploited for nanoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Filrsov, Science, 2004, 306: 666

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature, 2005, 438: 197

    Article  ADS  Google Scholar 

  3. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 2005, 438: 201

    Article  ADS  Google Scholar 

  4. C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, t. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science, 2006, 312: 1191

    Article  ADS  Google Scholar 

  5. C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B, 2004, 108: 19912

    Google Scholar 

  6. M. Y. Han, B. Özyilmaz, Y. B. Zhang, and P. Kim, Phys. Rev. Lett., 2007, 98: 206805

    Google Scholar 

  7. X. L. Li, X. R. Wang, L. Zhang, S. Lee, and H. J. Dai, Science, 2008, 319: 1229

    Article  ADS  Google Scholar 

  8. K. Nakada and M. Fujita, Phys. Rev. B, 1996, 54: 17954

    Google Scholar 

  9. Y. Miyamoto, Phys. Rev. B, 1999, 59: 9858

    Article  ADS  Google Scholar 

  10. H. Lee, Y. W. Son, N. Park, S. Han, and J. Yu, Phys. Rev. B, 2005, 72: 174431

  11. M. Ezawa, Phys. Rev. B, 2006, 73: 045432

    Google Scholar 

  12. Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett., 2006, 97: 216803

    Google Scholar 

  13. V. Barone, O. Hod, and G. E. Scuseria, Nano Lett., 2006, 6: 2748

    Article  ADS  Google Scholar 

  14. Q. M. Yan, B. Huang, J. Yu, F. W. Zheng, J. Zang, J. Wu, B. L. Gu, F. Liu, and W. H. Duan, Nano Lett., 2007, 7: 1469

    Article  ADS  Google Scholar 

  15. Z. F. Wang, Q. W. Shi, Q. X. Li, X. P. Wang, J. G. Hou, H. X. Zheng, Y, Yao, and J. Chen, App. Phys. Lett., 2007, 91: 053109

    Google Scholar 

  16. X. J. Wu and X. C. Zeng, Nano Res., 2008, 1: 40

    Article  Google Scholar 

  17. W. L. Wang, S. Meng, and E. Kaxiras, Nano Lett., 2008, 8: 241

    Article  ADS  Google Scholar 

  18. J. Fernndez-Rossier and J. J. Palacios, Phys. Rev. Lett., 2007, 99: 177204

    Google Scholar 

  19. O. Hod, J. E. Peralta, and G. E. Scuseria, Phys. Rev. B, 2007, 76: 233401

    Google Scholar 

  20. O. Hod, V. Barone, and G. E. Scuseria, Phys. Rev. B, 2008, 77: 035411

    Google Scholar 

  21. M. Ezawa, Phys. Rev. B, 2007, 76: 245415

    Google Scholar 

  22. M. Ezawa, Physica E, 2008, 40: 1421

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. W. Son, M. L. Cohen, and S. G. Louie, Nature, 2006, 444: 347

    Article  ADS  Google Scholar 

  24. E. Rudberg, P. Satek, and Y. Luo, Nano Lett., 2007, 7: 2211

    Article  ADS  Google Scholar 

  25. O. Hod, V. Barone, J. E. Peralta, and G. E. Scuseria, Nano Lett., 2007, 7: 2295

    Article  ADS  Google Scholar 

  26. E. J. Kan, Z. Y. Li, J. L. Yang, and J. G. Hou, J. Am. Chem. Soc., 2008, 130: 4224

    Article  Google Scholar 

  27. K. S. Novoselov, A. K. Geim, and S. V. Morozov, Proc. Natl. Acad. Sci. USA, 2005, 102: 10451

    Article  ADS  Google Scholar 

  28. A. J. Du, S. C. Smith, and G. Q. Lu, Chem. Phys. Lett., 2007, 477: 181

    Article  ADS  Google Scholar 

  29. Z. H. Zhang and W. L. Guo, Phys. Rev. B, 2008, 77: 075403

    Google Scholar 

  30. X. F. Gao, Z. Zhou, Y. L. Zhao, S. Nagase, S. B. Zhang, and Z. F. Chen, J. Phys. Chem. C, 2008, 112: 12677

    Google Scholar 

  31. F. W. Zheng, Z. R. Liu, J. Wu, W. H. Duan, and B. L. Gu, Phys. Rev. B, 2008, 78: 085423

    Google Scholar 

  32. C. H. Park and S. G. Louie, Nano Lett., 2008, 8: 2200

    Article  ADS  Google Scholar 

  33. V. Barone and J. E. Peralta, Nano Lett., 2008, 8: 2210

    Article  ADS  Google Scholar 

  34. F. W. Zheng, G. Zhou, Z. R. Liu, J. Wu, W. H. Duan, B. L. Gu, and S. B. Zhang, Phys. Rev. B, 2008, 78: 205415

    Google Scholar 

  35. B. Delley, J. Chem. Phys., 1990, 92: 508

    Article  ADS  Google Scholar 

  36. B. Delley, J. Chem. Phys., 2003, 113: 7756

    Article  ADS  Google Scholar 

  37. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865

    Article  ADS  Google Scholar 

  38. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13: 5188

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Cheng Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Xj., Wu, Mh. & Zeng, X.C. Chemically decorated boron-nitride nanoribbons. Front. Phys. China 4, 367–372 (2009). https://doi.org/10.1007/s11467-009-0022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-009-0022-x

Keywords

PACS numbers

Navigation