Skip to main content
Log in

Time-dependent density functional theory for quantum transport

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The rapid miniaturization of electronic devices motivates research interests in quantum transport. Recently time-dependent quantum transport has become an important research topic. Here we review recent progresses in the development of time-dependent density-functional theory for quantum transport including the theoretical foundation and numerical algorithms. In particular, the reduced-single electron density matrix based hierarchical equation of motion, which can be derived from Liouville-von Neumann equation, is reviewed in details. The numerical implementation is discussed and simulation results of realistic devices will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Auf der Maur, M. Povolotskyi, F. Sacconi, A. Pecchia, G. Romano, G. Penazzi, and A. Di Carlo, TiberCAD: Towards multiscale simulation of optoelectronic devices, Opt. Quantum Electron., 2008, 40(14–15): 1077

    Article  Google Scholar 

  2. M. C. Petty, Molecular Electronics: From Principles to Practice, Wiley, 2008: 544

    Google Scholar 

  3. A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett., 1974, 29(2): 277

    Article  ADS  Google Scholar 

  4. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science, 1997, 278(5336): 252

    Article  Google Scholar 

  5. H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature, 2009, 462(7276): 1039

    Article  ADS  Google Scholar 

  6. H. Song, M. A. Reed, and T. Lee, Single molecule electronic devices, Adv. Mater., 2011, 23(14): 1583

    Article  Google Scholar 

  7. S. W. Wu, N. Ogawa, and W. Ho, Atomic-scale coupling of photons to single-molecule junctions, Science, 2006, 312(5778): 1362

    Article  ADS  Google Scholar 

  8. M. Galperin, and A. Nitzan, Molecular optoelectronics: the interaction of molecular conduction junctions with light, Phys. Chem. Chem. Phys., 2012, 14(26): 9421

    Article  Google Scholar 

  9. A. Nitzan and M. A. Ratner, Electron transport in molecular wire junctions, Science, 2003, 300(5624): 1384

    Article  ADS  Google Scholar 

  10. M. Paulsson, T. Frederiksen, and M. Brandbyge, Inelastic transport through molecules: Comparing first-principles calculations to experiments, Nano Lett., 2006, 6(2): 258

    Article  ADS  Google Scholar 

  11. M. Galperin, M. A Ratner, and A. Nitzan, Molecular transport junctions: Vibrational effects, J. Phys.: Condens. Matter, 2007, 19(10): 103201

    ADS  Google Scholar 

  12. J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, Vol. 1, World Scientific Series in Nanotechnology and Nanoscience, 2010: 703

    Google Scholar 

  13. T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Electrical pulse measurement, inelastic relaxation, and non-equilibrium transport in a quantum dot, J. Phys.: Condens. Matter, 2003, 15: R1395

    ADS  Google Scholar 

  14. J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407

    Article  ADS  Google Scholar 

  15. M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 2002, 65(16): 165401

    Article  ADS  Google Scholar 

  16. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Self-consistentcharge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B, 1998, 58(11): 7260

    Article  ADS  Google Scholar 

  17. T. A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, and T. Frauenheim, Tight-binding approach to time-dependent density-functional response theory, Phys. Rev. B, 2001, 63(8): 085108

    Article  ADS  Google Scholar 

  18. C. Yam, L. Meng, G. H. Chen, Q. Chen, and N. Wong, Multiscale quantum mechanics/electromagnetics simulation for electronic devices, Phys. Chem. Chem. Phys., 2011, 13(32): 14365

    Article  Google Scholar 

  19. L. Meng, C. Yam, S. Koo, Q. Chen, N. Wong, and G. H. Chen, Dynamic multiscale quantum mechanics/electromagnetics simulation method, J. Chem. Theory Comput., 2012, 8(4): 1190

    Article  Google Scholar 

  20. G. Stefanucci and C. O. Almbladh, Time-dependent quantum transport: An exact formulation based on TDDFT, Europhys. Lett., 2004, 67(1): 14

    Article  ADS  Google Scholar 

  21. J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory, Phys. Rev. B, 2006, 74(8): 085324

    Article  ADS  Google Scholar 

  22. S. Kurth, G. Stefanucci, C. O. Almbladh, A. Rubio, and E. K. U. Gross, Time-dependent quantum transport: A practical scheme using density functional theory, Phys. Rev. B, 2005, 72(3): 035308

    Article  ADS  Google Scholar 

  23. J. Yuen-Zhou, D. G. Tempel, C. A. Rodrǵuez-Rosario, and A. Aspuru-Guzik, Time-dependent density functional theory for open quantum systems with unitary propagation, Phys. Rev. Lett., 2010, 104(4): 043001

    Article  ADS  Google Scholar 

  24. X. Zheng, F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, Time-dependent density-functional theory for open systems, Phys. Rev. B, 2007, 75(19): 195127

    Article  ADS  Google Scholar 

  25. X. Zheng, G. H. Chen, Y. Mo, S. Koo, H. Tian, C. Yam, and Y. Yan, Time-dependent density functional theory for quantum transport, J. Chem. Phys., 2010, 133(11): 114101

    Article  ADS  Google Scholar 

  26. S. H. Ke, R. Liu, W. Yang, and H. U. Baranger, Timedependent transport through molecular junctions, J. Chem. Phys., 2010, 132(23): 234105

    Article  ADS  Google Scholar 

  27. K. Burke, R. Car, and R. Gebauer, Density functional theory of the electrical conductivity of molecular devices, Phys. Rev. Lett., 2005, 94(14): 146803

    Article  ADS  Google Scholar 

  28. Y. Zhang, S. Chen, and G. H. Chen, First-principles timedependent quantum transport theory, Phys. Rev. B, 2013, 87(8): 085110

    Article  ADS  Google Scholar 

  29. S. Chen, H. Xie, Y. Zhang, X. Cui, and G. H. Chen, Quantum transport through an array of quantum dots, Nanoscale, 2013, 5(1): 169

    Article  ADS  Google Scholar 

  30. A. P. Jauho, N. S. Wingreen, and Y. Meir, Timedependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B, 1994, 50(8): 5528

    Article  ADS  Google Scholar 

  31. C. Y. Yam, Y. Mo, F. Wang, X. B. Li, G. H. Chen, X. Zheng, Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard III, Dynamic admittance of carbon nanotube-based molecular electronic devices and their equivalent electric circuit, Nanotechnology, 2008, 19(49): 495203

    Article  Google Scholar 

  32. K. F. Albrecht, H. Wang, L. Mühlbacher, M. Thoss, and A. Komnik, Bistability signatures in nonequilibrium charge transport through molecular quantum dots, Phys. Rev. B, 2012, 86(8): 081412

    Article  ADS  Google Scholar 

  33. E. Khosravi, S. Kurth, G. Stefanucci, and E. Gross, The role of bound states in time-dependent quantum transport, Appl. Phys. A, 2008, 93(2): 355

    Article  ADS  Google Scholar 

  34. E. Khosravi, G. Stefanucci, S. Kurth, and E. K. Gross, Bound states in time-dependent quantum transport: Oscillations and memory effects in current and density, Phys. Chem. Chem. Phys., 2009, 11(22): 4535

    Article  Google Scholar 

  35. B. Popescu, P. B. Woiczikowski, M. Elstner, and U. Kleinekathöfer, Time-dependent view of sequential transport through molecules with rapidly fluctuating bridges, Phys. Rev. Lett., 2012, 109(17): 176802

    Article  ADS  Google Scholar 

  36. J. K. Tomfohr and O. F. Sankey, Time-dependent simulation of conduction through a molecule, physica status solidi (b), 2001, 226(1): 115

    Article  ADS  Google Scholar 

  37. N. Bushong, N. Sai, and M. Di Ventra, Approach to steadystate transport in nanoscale conductors, Nano Lett., 2005, 5(12): 2569

    Article  ADS  Google Scholar 

  38. J. Muga, J. Palao, B. Navarro, and I. Egusquiza, Complex absorbing potentials, Phys. Rep., 2004, 395(6): 357

    Article  ADS  MathSciNet  Google Scholar 

  39. R. Baer, T. Seideman, S. Ilani, and D. Neuhauser, Ab initio study of the alternating current impedance of a molecular junction, J. Chem. Phys., 2004, 120(7): 3387

    Article  ADS  Google Scholar 

  40. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 1964, 136(3B): B864

    Article  ADS  MathSciNet  Google Scholar 

  41. E. Runge and E. K. U. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett., 1984, 52(12): 997

    Article  ADS  Google Scholar 

  42. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Østergaard Sørensen, Analyticity of the density of electronic wavefunctions, Arkiv för Matematik, 2004, 42(1): 87

    Article  ADS  MATH  Google Scholar 

  43. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Østergaard Sørensen, The electron density is smooth away from the nuclei, Commun. Math. Phys., 2002, 228(3): 401

    Article  ADS  MATH  Google Scholar 

  44. X. Zheng, C. Yam, F. Wang, and G. H. Chen, Existence of time-dependent density-functional theory for open electronic systems: Time-dependent holographic electron density theorem, Phys. Chem. Chem. Phys., 2011, 13(32): 14358

    Article  Google Scholar 

  45. G. Vignale and W. Kohn, Current-dependent exchangecorrelation potential for dynamical linear response theory, Phys. Rev. Lett., 1996, 77(10): 2037

    Article  ADS  Google Scholar 

  46. M. Di Ventra and R. D’Agosta, Stochastic time-dependent current-density-functional theory, Phys. Rev. Lett., 2007, 98(22): 226403

    Article  ADS  Google Scholar 

  47. R. D’Agosta and M. Di Ventra, Stochastic time-dependent current-density-functional theory: A functional theory of open quantum systems, Phys. Rev. B, 2008, 78(16): 165105

    Article  ADS  Google Scholar 

  48. M. Galperin and S. Tretiak, Linear optical response of current-carrying molecular junction: a nonequilibrium Green’s function-time-dependent density functional theory approach, J. Chem. Phys., 2008, 128(12): 124705

    Article  ADS  Google Scholar 

  49. Y. Xing, B. Wang, and J. Wang, First-principles investigation of dynamical properties of molecular devices under a steplike pulse, Phys. Rev. B, 2010, 82(20): 205112

    Article  ADS  MathSciNet  Google Scholar 

  50. L. Zhang, Y. Xing, and J. Wang, First-principles investigation of transient dynamics of molecular devices, Phys. Rev. B, 2012, 86(15): 155438

    Article  ADS  Google Scholar 

  51. P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B, 2009, 80(11): 115107

    Article  ADS  Google Scholar 

  52. R. Gebauer, K. Burke, and R. Car, in: Time-Dependent Density Functional Theory, Lecture Notes in Physics, Vol. 706, edited by M. Marques, C. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E. U. Gross, Berlin Heidelberg: Springer, 2006: 463–477

  53. J. Jin, X. Zheng, and Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys., 2008, 128(23): 234703

    Article  ADS  Google Scholar 

  54. H. Tian and G. H. Chen, An efficient solution of Liouvillevon Neumann equation that is applicable to zero and finite temperatures, J. Chem. Phys., 2012, 137(20): 204114

    Article  ADS  Google Scholar 

  55. H. Xie, F. Jiang, H. Tian, X. Zheng, Y. Kwok, S. Chen, C. Yam, Y. Yan, and G. H. Chen, Time-dependent quantum transport: an efficient method based on Liouville-von-Neumann equation for single-electron density matrix, J. Chem. Phys., 2012, 137(4): 044113

    Article  ADS  Google Scholar 

  56. J. Hu, R. X. Xu, and Y. Yan, Communication: Padé spectrum decomposition of Fermi function and Bose function, J. Chem. Phys., 2010, 133(10): 101106

    Article  ADS  Google Scholar 

  57. J. R. Soderstrom, D. H. Chow, and T. C. McGill, New negative differential resistance device based on resonant interband tunneling, Appl. Phys. Lett., 1989, 55(11): 1094

    Article  ADS  Google Scholar 

  58. M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F, 1985, 15(4): 851

    Article  ADS  Google Scholar 

  59. F. Wang, C. Y. Yam, G. H. Chen, and K. Fan, Density matrix based time-dependent density functional theory and the solution of its linear response in real time domain, J. Chem. Phys., 2007, 126(13): 134104

    Article  ADS  Google Scholar 

  60. G. Stefanucci, S. Kurth, E. Gross, and A. Rubio, in: Molecular and Nano Electronics: Analysis, Design and Simulation, Theoretical and Computational Chemistry, Vol. 17, edited by J. Seminario, Elsevier, 2007: 247–284

  61. C. Yam, X. Zheng, G. Chen, Y. Wang, T. Frauenheim, and T. A. Niehaus, Time-dependent versus static quantum transport simulations beyond linear response, Phys. Rev. B, 2011, 83(24): 245448

    Article  ADS  Google Scholar 

  62. N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems, Phys. Rev. Lett., 2005, 94(18): 186810

    Article  ADS  Google Scholar 

  63. F. Evers, F. Weigend, and M. Koentopp, Conductance of molecular wires and transport calculations based on densityfunctional theory, Phys. Rev. B, 2004, 69(23): 235411

    Article  ADS  Google Scholar 

  64. G. Stefanucci and S. Kurth, Towards a description of the Kondo effect using time-dependent density-functional theory, Phys. Rev. Lett., 2011, 107(21): 216401

    Article  ADS  Google Scholar 

  65. E. Khosravi, A. M. Uimonen, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, and E. K. U. Gross, Correlation effects in bistability at the nanoscale: Steady state and beyond, Phys. Rev. B, 2012, 85(7): 075103

    Article  ADS  Google Scholar 

  66. S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U. Gross, Dynamical Coulomb blockade and the derivative discontinuity of time-dependent density functional theory, Phys. Rev. Lett., 2010, 104(23): 236801

    Article  ADS  Google Scholar 

  67. P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, A many-body approach to quantum transport dynamics: Initial correlations and memory effects, Europhys. Lett., 2008, 84(6): 67001

    Article  ADS  Google Scholar 

  68. Y. Zhang, C. Y. Yam, and G. H. Chen, Dissipative time-dependent quantum transport theory, J. Chem. Phys., 2013, 138(16): 164121

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuanHua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwok, Y., Zhang, Y. & Chen, G. Time-dependent density functional theory for quantum transport. Front. Phys. 9, 698–710 (2014). https://doi.org/10.1007/s11467-013-0361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0361-5

Keywords

Navigation