Skip to main content
Log in

Recent advances in MXene: Preparation, properties, and applications

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Owing to the exceptional properties of graphene, intensive studies have been carried out on novel two-dimensional (2D) materials. In the past several years, an elegant exfoliation approach has been used to successfully create a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered MAX phases. More recently, some unique properties of MXene have been discovered leading to proposals of potential applications. In this review, we summarize the latest progress in development of MXene from both a theoretical and experimental view, with emphasis on the possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  2. A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)

    Article  ADS  Google Scholar 

  3. S. Guo and S. Dong, Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev. 40(5), 2644 (2011)

    Article  Google Scholar 

  4. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178 (2011)

    Article  Google Scholar 

  5. T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57(7), 1061 (2012)

    Article  Google Scholar 

  6. Q. Tang, Z. Zhou, and Z. Chen, Graphene-related nanomaterials: Tuning properties by functionalization, Nanoscale 5(11), 4541 (2013)

    Article  ADS  Google Scholar 

  7. Q. Tang and Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)

    Article  MathSciNet  Google Scholar 

  8. M. Naguib and Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction, Acc. Chem. Res. 48(1), 128 (2015)

    Article  Google Scholar 

  9. Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014)

    Article  Google Scholar 

  10. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)

    Article  Google Scholar 

  11. I. R. Shein and A. L. Ivanovskii, Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation, Micro & Nano Lett. 8(2), 59 (2013)

    Article  Google Scholar 

  12. M. W. Barsoum and M. A. X. Phases, Properties of Machinable Ternary Carbides and Nitrides, Wiley & Sons, 2013

    Book  Google Scholar 

  13. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)

    Article  Google Scholar 

  14. M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, and M. W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for li-ion batteries, J. Am. Chem. Soc. 135(43), 15966 (2013)

    Article  Google Scholar 

  15. M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L. M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S. J. L. Billinge, and M. W. Barsoum, Synthesis and characterization of two-dimensional Nb4C3 (MXene), Chem. Commun. 50(67), 9517 (2014)

    Article  Google Scholar 

  16. O. Mashtalir, K. M. Cook, V.N. Mochalin, M. Crowe, M. W. Barsoum, and Y. Gogotsi, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media, J. Mater. Chem. A 2(35), 14334 (2014)

    Article  Google Scholar 

  17. M. Kurtoglu, M. Naguib, Y. Gogotsi, and M. W. Barsoum, First principles study of two-dimensional early transition metal carbides, MRS Commun. 2(04), 133 (2012)

    Article  Google Scholar 

  18. M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23(17), 2185 (2013)

    Article  Google Scholar 

  19. J. Come, M. Naguib, P. Rozier, M. W. Barsoum, Y. Gogotsi, P. L. Taberna, M. Morcrette, and P. Simon, A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode, J. Electrochem. Soc. 159(8), A1368 (2012)

    Article  Google Scholar 

  20. J. Hu, B. Xu, C. Ouyang, S. A. Yang, and Y. Yao, Investigations on V2C and V2CX2 (X = F, OH) monolayer as a promising anode material for li ion batteries from firstprinciples calculations, J. Phys. Chem. C 118(42), 24274 (2014)

    Article  Google Scholar 

  21. X. Xie, S. Chen, W. Ding, Y. Nie, and Z. Wei, An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction, Chem. Commun. 49(86), 10112 (2013)

    Article  Google Scholar 

  22. F. Wang, C. H. Yang, C. Y. Duan, D. Xiao, Y. Tang, and J. F. Zhu, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor, J. Electrochem. Soc. 162(1), B16 (2015)

    Article  Google Scholar 

  23. M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)

    Article  Google Scholar 

  24. O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall’Agnese, M. Heon, M. W. Barsoum, and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4, 1716 (2013)

    Article  ADS  Google Scholar 

  25. F. Chang, C. Li, J. Yang, H. Tang, and M. Xue, Synthesis of a new graphene-like transition metal carbide by deintercalating Ti3AlC2, Mater. Lett. 109, 295 (2013)

    Article  Google Scholar 

  26. J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A. Naslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, Transparent conductive twodimensional titanium carbide epitaxial thin films, Chem. Mater. 26(7), 2374 (2014)

    Article  Google Scholar 

  27. M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, and M. W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516(7529), 78 (2014)

    ADS  Google Scholar 

  28. O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, and M. W. Barsoum, Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid, Mater. Chem. Phys. 139(1), 147 (2013)

    Article  Google Scholar 

  29. Y. Xie, M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, X. Q. Yu, K. W. Nam, X. Q. Yang, A. I. Kolesnikov, and P. R. C. Kent, Role of surface structure on li-ion energy storage capacity of two-dimensional transition-metal carbides, J. Am. Chem. Soc. 136(17), 6385 (2014)

    Article  Google Scholar 

  30. Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M. W. Barsoum, H. L. L. Zhuang, and P. R. C. Kent, Prediction and characterization of MXene nanosheet anodes for nonlithiumion batteries, ACS Nano 8(9), 9606 (2014)

    Article  Google Scholar 

  31. T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu, and X. Wang, Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: A comparative study, Phys. Chem. Chem. Phys. 17(15), 9997 (2015)

    Article  Google Scholar 

  32. Q. Tang, Z. Zhou, and P. W. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer, J. Am. Chem. Soc. 134(40), 16909 (2012)

    Article  Google Scholar 

  33. X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu, and L. Chen, Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X, J. Am. Chem. Soc. 137(7), 2715 (2015)

    Article  Google Scholar 

  34. A. N. Enyashin and A. L. Ivanovskii, Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2tx Nx(OH)2 from DFTB calculations, J. Solid State Chem. 207, 42 (2013)

    Article  ADS  Google Scholar 

  35. V. Mauchamp, M. Bugnet, E. P. Bellido, G. A. Botton, P. Moreau, D. Magne, M. Naguib, T. Cabioc’h, and M. W. Barsoum, Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects, Phys. Rev. B 89(23), 235428 (2014)

    Article  ADS  Google Scholar 

  36. I. R. Shein and A. L. Ivanovskii, Planar nano-block structures Ti n+1Al0.5Cn and Ti n+1Cn (n=1, and 2) from MAX phases: Structural, electronic properties and relative stability from first principles calculations, Superlattices Microstruct. 52(2), 147 (2012)

    Article  ADS  Google Scholar 

  37. I. R. Shein and A. L. Ivanovskii, Graphene-like titanium carbides and nitrides Ti n+1Cn, Ti n+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability, Comput. Mater. Sci. 65, 104 (2012)

    Article  Google Scholar 

  38. Y. Xie and P. R. C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Ti n+1Xn (X = C, N) monolayers, Phys. Rev. B 87(23), 235441 (2013)

    Article  ADS  Google Scholar 

  39. S. Zhao, W. Kang, and J. Xue, Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains, Appl. Phys. Lett. 104(13), 133106 (2014)

    Article  ADS  Google Scholar 

  40. S. Wang, J. X. Li, Y. L. Du, and C. Cui, First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer, Comput. Mater. Sci. 83, 290 (2014)

    Article  Google Scholar 

  41. M. Khazaei, M. Arai, T. Sasaki, M. Estili, and Y. Sakka, Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family, Phys. Chem. Chem. Phys. 16(17), 7841 (2014)

    Article  Google Scholar 

  42. H. Lashgari, M. R. Abolhassani, A. Boochani, S. M. Elahi, and J. Khodadadi, Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations, Solid State Commun. 195, 61 (2014)

    Article  ADS  Google Scholar 

  43. A. N. Enyashin and A. L. Ivanovskii, Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by Methoxy groups, J. Phys. Chem. C 117(26), 13637 (2013)

    Article  Google Scholar 

  44. Y. Lee, S. B. Cho, and Y. C. Chung, Tunable indirect to direct band gap transition of monolayer Sc2CO2 by the strain effect, ACS Appl. Mater. Interfaces 6(16), 14724 (2014)

    Article  Google Scholar 

  45. Y. Lee, Y. Hwang, S. B. Cho, and Y. C. Chung, Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field, Phys. Chem. Chem. Phys. 16(47), 26273 (2014)

    Article  Google Scholar 

  46. N. J. Lane, M. W. Barsoum, and J. M. Rondinelli, Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Ta n+1Cn (n = 1,2,3), EPL 101(5), 57004 (2013)

    Article  ADS  Google Scholar 

  47. M. Naguib, O. Mashtalir, M. R. Lukatskaya, B. Dyatkin, C. Zhang, V. Presser, Y. Gogotsi, and M. W. Barsoum, Onestep synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes, Chem. Commun. 50(56), 7420 (2014)

    Article  Google Scholar 

  48. H. Ghassemi, W. Harlow, O. Mashtalir, M. Beidaghi, M. R. Lukatskaya, Y. Gogotsi, and M. L. Taheri, In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbonsupported TiO2, J. Mater. Chem. A Mater. Energy Sustain. 2(35), 14339 (2014)

    Article  Google Scholar 

  49. Z. Y. Li, L. B. Wang, D. D. Sun, Y. D. Zhang, B. Z. Liu, Q. K. Hu, and A. G. Zhou, Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2, Mater. Sci. Eng. B 191, 33 (2015)

    Article  Google Scholar 

  50. J. X. Li, Y. L. Du, C. X. Huo, S. Wang, and C. Cui, Thermal stability of two-dimensional Ti2C nanosheets, Ceram. Int. 41(2), 2631 (2015)

    Article  Google Scholar 

  51. M. Naguib, J. Come, B. Dyatkin, V. Presser, P. L. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, MXene: A promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun. 16(1), 61 (2012)

    Article  Google Scholar 

  52. C. Eames and M. S. Islam, Ion intercalation into two-dimensional transition-metal carbides: Global screening for new high-capacity battery materials, J. Am. Chem. Soc. 136(46), 16270 (2014)

    Article  Google Scholar 

  53. D. D. Sun, M. S. Wang, Z. Y. Li, G. X. Fan, L. Z. Fan, and A. G. Zhou, Two-dimensional Ti3C2 as anode material for Li-ion batteries, Electrochem. Commun. 47, 80 (2014)

    Article  Google Scholar 

  54. M. D. Levi, M. R. Lukatskaya, S. Sigalov, M. Beidaghi, N. Shpigel, L. Daikhin, D. Aurbach, M. W. Barsoum, and Y. Gogotsi, Adv. Energy Mater. 5, 1400815 (2014)

    Google Scholar 

  55. S. J. Zhao, W. Kang, and J. M. Xue, Role of strain and concentration on the li adsorption and diffusion properties on Ti2C layer, J. Phys. Chem. C 118(27), 14983 (2014)

    Article  Google Scholar 

  56. J. B. Goodenough and K. S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135(4), 1167 (2013)

    Article  Google Scholar 

  57. D. Q. Er, J.W. Li, M. Naguib, Y. Gogotsi, and V. B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries, ACS Appl. Mater. Interfaces 6(14), 11173 (2014)

    Article  Google Scholar 

  58. M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341(6153), 1502 (2013)

    Article  ADS  Google Scholar 

  59. E. Yang, H. Ji, J. Kim, H. Kim, and Y. Jung, Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries, Phys. Chem. Chem. Phys. 17(7), 5000 (2015)

    Article  Google Scholar 

  60. Y. Dall’Agnese, M. R. Lukatskaya, K. M. Cook, P. L. Taberna, Y. Gogotsi, and P. Simon, High capacitance of surface-modified 2D titanium carbide in acidic electrolyte, Electrochem. Commun. 48, 118 (2014)

    Article  Google Scholar 

  61. Z. Ling, C. E. Ren, M. Q. Zhao, J. Yang, J. M. Giammarco, J. S. Qiu, M. W. Barsoum, and Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, Proc. Natl. Acad. Sci. USA 111(47), 16676 (2014)

    Article  ADS  Google Scholar 

  62. M. Q. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. Zhang, K. L. Van Aken, M. W. Barsoum, and Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater. 27(2), 339 (2015)

    Article  Google Scholar 

  63. X. Liang, A. Garsuch, and L. F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries, Angew. Chem. Int. Ed. 54(13), 3907 (2015)

    Article  Google Scholar 

  64. X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, and A. Yamada, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nat. Commun. 6, 6544 (2015)

    Article  ADS  Google Scholar 

  65. Q.M. Peng, J. X. Guo, Q. R. Zhang, J. Y. Xiang, B. Z. Liu, A. G. Zhou, R. P. Liu, and Y. J. Tian, Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide, J. Am. Chem. Soc. 136(11), 4113 (2014)

    Article  Google Scholar 

  66. Q. K. Hu, D. D. Sun, Q. H. Wu, H. Y. Wang, L. B. Wang, B. Z. Liu, A. G. Zhou, and J. L. He, MXene: A new family of promising hydrogen storage medium, J. Phys. Chem. A 117(51), 14253 (2013)

    Article  Google Scholar 

  67. Q. K. Hu, H. Y. Wang, Q. H. Wu, X. T. Ye, A. G. Zhou, D. D. Sun, L. B. Wang, B. Z. Liu, and J. L. He, Twodimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations, Int. J. Hydrogen Energy 39(20), 10606 (2014)

    Article  Google Scholar 

  68. X. Li, G. Fan, and C. Zeng, Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride, Int. J. Hydrogen Energy 39(27), 14927 (2014)

    Article  Google Scholar 

  69. Y. P. Gao, L. B. Wang, Z. Y. Li, A. G. Zhou, Q. K. Hu, and X. X. Cao, Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate, Solid State Sci. 35, 62 (2014)

    Article  ADS  Google Scholar 

  70. J. Yang, B. Chen, H. Song, H. Tang, and C. Li, Synthesis, characterization, and tribological properties of twodimensional Ti3C2, Cryst. Res. Technol. 49(11), 926 (2014)

    Article  Google Scholar 

  71. X. H. Zhang, M. Q. Xue, X. H. Yang, Z. P. Wang, G. S. Luo, Z. D. Huang, X. L. Sui, and C. S. Li, Preparation and tribological properties of Ti3C2(OH)2 nanosheets as additives in base oil, RSC Adv. 5(4), 2762 (2015)

    Article  Google Scholar 

  72. Z. N. Ma, Z. P. Hu, X. D. Zhao, Q. Tang, D. H. Wu, Z. Zhou, and L. X. Zhang, Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer, J. Phys. Chem. C 118(10), 5593 (2014)

    Article  Google Scholar 

  73. J. Chen, K. Chen, D. Tong, Y. Huang, J. Zhang, J. Xue, Q. Huang, and T. Chen, CO2 and temperature dual responsive “Smart” MXene phases, Chem. Commun. 51(2), 314 (2015)

    Article  Google Scholar 

  74. Y. Lee, Y. Hwang, and Y. C. Chung, Achieving type I, II, and III heterojunctions using functionalized MXene, ACS Appl. Mater. Interfaces 7(13), 7163 (2015)

    Article  Google Scholar 

  75. X. Li, Y. Dai, Y. Ma, Q. Liu, and B. Huang, Intriguing electronic properties of two-dimensional MoS2 /TM2CO2 (TM = Ti, Zr, or Hf) hetero-bilayers: Type-II semiconductors with tunable band gaps, Nanotechnology 26(13), 135703 (2015)

    Article  ADS  Google Scholar 

  76. X. Zhang, Z. Ma, X. Zhao, Q. Tang, and Z. Zhou, Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes, J. Mater. Chem. A 3(9), 4960 (2015)

    Article  Google Scholar 

  77. S. J. Zhao, W. Kang, and J. M. Xue, MXene nanoribbons, J. Mater. Chem. C 3(4), 879 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhou  (周震).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, JC., Zhang, X. & Zhou, Z. Recent advances in MXene: Preparation, properties, and applications. Front. Phys. 10, 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-015-0493-x

Keywords

Navigation