Skip to main content
Log in

Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The low magnetic moment (MM) in diluted magnetic semiconductors (DMS) at low impurity doping levels has triggered considerable research into condensed magnetic semiconductors (CMS).This work reports an ab-initio investigation of the electronic structures and magnetic properties of ZnO in a zinc-blende (ZB) structure doped with nickel ions. Ni-doped ZnO-based DMS and CMS exhibit a dominance of ferromagnetic coupling over antiferromagnetic. A robust increase in the magnetization has been observed as a function of Ni impurity levels. This material favors short-range magnetic interactions at the ground state, suggesting that the observed ferromagnetism is defined by the double exchange mechanism. The spin-polarized density of states (DOS) of Ni-doped ZnO characterizes it as half-metallic with a considerable energy gap for up-spin components and as metallic for-down spins. Half-metallic Ni:ZnO based magnetic semiconductors with high magnetization are expected to have potential applications in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Ohno, D. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. Awschalom, Nature 402(6763), 790 (1999)

    Article  ADS  Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287(5455), 1019 (2000)

    Article  ADS  Google Scholar 

  3. T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Magnetic properties of Mndoped ZnO, Appl. Phys. Lett. 78(7), 958 (2001)

    Article  ADS  Google Scholar 

  4. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, An oxide-diluted magnetic semiconductor: Mndoped ZnO, Appl. Phys. Lett. 75(21), 3366 (1999)

    Article  ADS  Google Scholar 

  5. A. Bonanni and T. Dietl, A story of high-temperature ferromagnetism in semiconductors, Chem. Soc. Rev. 39(2), 528 (2010)

    Article  Google Scholar 

  6. I. Bilecka, L. Luo, I. Djerdj, M. D. Rossell, M. Jagodic, Z. Jaglicic, Y. Masubuchi, S. Kikkawa, and M. Niederberger, Microwave-assisted nonaqueous sol–gel chemistry for highly concentrated ZnO-based magnetic semiconductor nanocrystals, J. Phys. Chem. C 115(5), 1484 (2011)

    Article  Google Scholar 

  7. F. Filippone, G. Mattioli, P. Alippi, and A. A. Bonapasta, Clusters and magnetic anchoring points in (Ga,Fe)N condensed magnetic semiconductors, Phys. Rev. Lett. 107(19), 196401 (2011)

    Article  ADS  Google Scholar 

  8. M. V. Limaye, S. B. Singh, S. K. Date, R. Gholap, and S. K. Kulkarni, Epitaxially grown zinc-blende structured Mn doped ZnO nanoshell on ZnS nanoparticles, Mater. Res. Bull. 44(2), 339 (2009)

    Article  Google Scholar 

  9. A. Ashrafi and C. Jagadish, Review of zincblende ZnO: Stability of metastable ZnO phases, J. Appl. Phys. 102(7), 071101 (2007)

    Article  ADS  Google Scholar 

  10. G. Lee, T. Kawazoe, and M. Ohtsu, Room temperature near-field photoluminescence of zinc-blend and wurtzite ZnO structures, Appl. Surf. Sci. 239(3), 394 (2005)

    Article  ADS  Google Scholar 

  11. J. Zhang, K. Yao, Z. Liu, and G. Gao, First principles calculations of Co-doped zinc-blende ZnO magnetic semiconductor, Physica B 405(6), 1447 (2010)

    Article  ADS  Google Scholar 

  12. N. Mamouni, M. Belaiche, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, M. Loulidi, E. Saidi, and E. Hlil, Electronic and magnetic structures of V-doped zinc blende Zn1-x VxNyO1-y and Zn1-x VxPyO1-y , Chin. Phys. B 20(8), 087504 (2011)

    Article  ADS  Google Scholar 

  13. C. C. Xu, L. Jiang, N. Leng, and P. J. Liu, Selective triggering of phase change in dielectrics by femtosecond pulse trains based on electron dynamics control, Chin. Phys. B 22(4), 047507 (2013)

    Article  ADS  Google Scholar 

  14. X. Li, J. Zhang, B. Xu, and K. Yao, Half-metallic ferromagnetism in Cu-doped zinc-blende ZnO from first principles study, J. Magn. Magn. Mater. 324(4), 584 (2012)

    Article  ADS  Google Scholar 

  15. B. U. Haq, R. Ahmed, A. Afaq, A. Shaari, and M. Zarshenas, Structural and electronic properties of ni-doped ZnO in zincblende phase: A DFT investigations, in: International Conference on Fundamental and Applied Sciences 2012 (ICFAS2012), AIP Publishing, 2012

    Google Scholar 

  16. T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, and T. Ito, Magnetic and magneto-transport properties of ZnO:Ni films, Physica E 10(1), 260 (2001)

    Article  ADS  Google Scholar 

  17. S. W. Jung, W. I. Park, G. C. Yi, and M. Kim, Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures, Adv. Mater. 15(16), 1358 (2003)

    Article  Google Scholar 

  18. J. Cui and U. Gibson, Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays, Appl. Phys. Lett. 87(13), 133108 (2005)

    Article  ADS  Google Scholar 

  19. M. Venkatesan, C. Fitzgerald, J. Lunney, and J. Coey, Anisotropic ferromagnetism in substituted zinc oxide, Phys. Rev. Lett. 93(17), 177206 (2004)

    Article  ADS  Google Scholar 

  20. B. Li, X. Xiu, R. Zhang, Z. Tao, L. Chen, Z. Xie, Y. Zheng, Study of structure and magnetic properties of Nidoped ZnO-based DMSs, Mater. Sci. Semicond. Process. 9(1), 141 (2006)

    Article  Google Scholar 

  21. D. L. Hou, R. B. Zhao, Y. Y. Wei, C. M. Zhen, C. F. Pan, and G. D. Tang, Room temperature ferromagnetism in Nidoped ZnO films, Curr. Appl. Phys. 10(1), 124 (2010)

    Article  ADS  Google Scholar 

  22. B. Pandey, S. Ghosh, P. Srivastava, D. Avasthi, D. Kabiraj, and J. Pivin, Synthesis and characterization of Ni-doped ZnO: A transparent magnetic semiconductor, J. Magn. Magn. Mater. 320(24), 3347 (2008)

    Article  ADS  Google Scholar 

  23. C. Cong, J. Hong, Q. Liu, L. Liao, and K. Zhang, Synthesis, structure and ferromagnetic properties of Ni-doped ZnO nanoparticles, Solid State Commun. 138(10), 511 (2006)

    Article  ADS  Google Scholar 

  24. G. Pei, C. Xia, S. Cao, J. Zhang, F. Wu, and J. Xu, Synthesis and magnetic properties of Ni-doped zinc oxide powders, J. Magn. Magn. Mater. 302(2), 340 (2006)

    Article  ADS  Google Scholar 

  25. T. Li, H. Qiu, P. Wu, M. Wang, and R. Ma, Characteristics of Ni-doped ZnO:Al films grown on glass by direct current magnetron co-sputtering, Thin Solid Films 515(7), 3905 (2007)

    Article  ADS  Google Scholar 

  26. G. Gu, G. Xiang, J. Luo, H. Ren, M. Lan, D. He, and X. Zhang, Magnetism in transition-metal-doped ZnO: A firstprinciples study, J. Appl. Phys. 112(2), 023913 (2012)

    Article  ADS  Google Scholar 

  27. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties, Appl. Phys. Lett. 78(24), 3824 (2001)

    Article  ADS  Google Scholar 

  28. Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, H. Qian, and K. Ibrahim, Structural, magnetic properties and photoemission study of Ni-doped ZnO, Solid State Commun. 135(7), 430 (2005)

    Article  ADS  Google Scholar 

  29. G. Pei, C. Xia, B. Wu, T. Wang, L. Zhang, Y. Dong, and J. Xu, Studies of magnetic interactions in Ni-doped ZnO from first-principles calculations, Comput. Mater. Sci. 43(3), 489 (2008)

    Article  Google Scholar 

  30. B. B. Straumal, A. A. Myatiev, P. B. Straumal, A. A. Mazilkin, S. G. Protasova, E. Goering, and B. Baretzky, Grain boundary layers in nanocrystalline ferromagnetic zinc oxide, JETP Lett. 92(6), 396 (2010)

    Article  ADS  Google Scholar 

  31. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Austria, 2001

    Google Scholar 

  32. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  33. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)

    Article  ADS  Google Scholar 

  34. F. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. B. Ul Haq, R. Ahmed, S. Goumri-Said, A. Shaari, and A. Afaq, Electronic structure engineering of ZnO with the modified Becke–Johnson exchange versus the classical correlation potential approaches, Phase Transitions 86 (12), 1167 (2013)

    Article  Google Scholar 

  36. B. Ul Haq, R. Ahmed, R. Khenata, M. Ahmed, and R. Hussain, A first-principles comparative study of exchange and correlation potentials for ZnO, Mater. Sci. Semicond. Process. 16 (4), 1169(2013)

  37. B. Ul Haq, A. Afaq, R. Ahmed, and S. Naseem, A Comprehensive DFT study of zinc oxide in different phases, Int. J. Mod. Phys. C 23(06), 1250043 (2012)

    Article  ADS  Google Scholar 

  38. J. Fu, B. Wu, H. Liu, C. Zhang, M. Lin, and L. Chen, Structural and magnetic ordering behaviour of (Co, Ni, and Al) doped ZnO diluted magnetic semiconductor, in: 2010 Symposium on Photonics and Optoelectronic (SOPO), IEEE, 2010

    Google Scholar 

  39. B. Ul Haq, R. Ahmed, A. Shaari, and S. Goumri-Said, GGA+U investigations of impurity d-electrons effects on the electronic and magnetic properties of ZnO, J. Magn. Magn. Mater. 362, 104 (2014)

    Article  ADS  Google Scholar 

  40. B. Ul Haq, R. Ahmed, and S. Goumri-Said, Tailoring ferromagnetism in chromium-doped zinc oxide, Mater. Res. Exp. 1(1), 016108 (2014)

    Article  Google Scholar 

  41. S. Goumri-Said, M. B. Kanoun, A. Manchon, and U. Schwingenschlögl, Spin-polarization reversal at the interface between benzene and Fe(100), J. Appl. Phys. 113(1), 013905 (2013)

    Article  ADS  Google Scholar 

  42. M. A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96(1), 99 (1954)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rashid Ahmed or Souraya Goumri-Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, B.U., Ahmed, R., Abdellatif, G. et al. Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations. Front. Phys. 11, 117101 (2016). https://doi.org/10.1007/s11467-015-0542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0542-5

Keywords

Navigation