Skip to main content
Log in

Multiple teleportation via partially entangled GHZ state

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger–Horne–Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)

    Article  ADS  Google Scholar 

  3. D. Bouwmeester, K. Mattle, J. W. Pan, H. Weinfurter, A. Zeilinger, and M. Zukowski, Experimental quantum teleportation of arbitrary quantum states, Appl. Phys. B 67(6), 749 (1998)

    Article  ADS  Google Scholar 

  4. J.W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Experimental entanglement swapping: Entangling photons that never interacted, Phys. Rev. Lett. 80(18), 3891 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. Ikram, S. Y. Zhu, and M. S. Zubairy, Quantum teleportation of an entangled state, Phys. Rev. A 62(2), 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. P. van Loock and S. L. Braunstein, Multipartite entanglement for continuous variables: A quantum teleportation network, Phys. Rev. Lett. 84(15), 3482 (2000)

    Article  ADS  Google Scholar 

  7. S. T. Cheng, C. Y. Wang, and M. H. Tao, Quantum communication for wireless wide-area networks, IEEE J. Sel. Areas Comm. 23(7), 1424 (2005)

    Article  Google Scholar 

  8. F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  9. L. Marinatto and T. Weber, Which kind of two-particle states can be teleported through a three-particle quantum channel, Found. Phys. Lett. 13(2), 119 (2000)

    Article  MathSciNet  Google Scholar 

  10. H. Lu and G. C. Guo, Teleportation of a two-particle entangled state via entanglement swapping, Phys. Rev. Lett. 276, 6–209 (2000)

    MathSciNet  MATH  Google Scholar 

  11. M. Cao and S. Q. Zhu, Probabilistic teleportation of n particle state via n pairs of entangled particles, Commun. Theor. Phys. 43(1), 69 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement, Phys. Rev. A 72(2), 022338 (2005)

    Article  ADS  Google Scholar 

  13. T. Gao, Quantum logic networks for probabilistic and controlled teleportation of unknown quantum states, Commun. Theor. Phys. 42(2), 223 (2004)

    Article  MATH  Google Scholar 

  14. P. Espoukeh and P. Pedram, Quantum teleportation through noisy channels with multi-qubit GHZ states, Quantum Inform. Process. 13(8), 1789 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Y. Chang, S. B. Zhang, L. L. Yan, and J. Li, Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad, Chin. Sci. Bull. 59(23), 2835 (2014)

    Article  Google Scholar 

  16. X. F. Zou and D. W. Qiu, Three-step semiquantum secure direct communication protocol, Sci. China - Phys. Mech. Astron. 57(9), 1696 (2014)

    Article  ADS  Google Scholar 

  17. L. M. Liang, S. H. Sun, M. S. Jiang, and C. Y. Li, Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices, Front. Phys. 9(5), 613 (2014)

    Article  Google Scholar 

  18. C. Perumangatt, A. Abdul Rahim, G. R. Salla, S. Prabhakar, G. K. Samanta, G. Paul, and R. P. Singh, Threeparticle hyper-entanglement: Teleportation and quantum key distribution, Quantum Inform. Process. 14(10), 3813 (2015)

    Article  ADS  MATH  Google Scholar 

  19. S. Sazim, S. Adhikari, S. Banerjee, and T. Pramanik, Quantification of entanglement of teleportation in arbitrary dimensions, Quantum Inform. Process. 13(4), 863 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. X. L. Wang, X. D. Cai, Z. E. Su, M.C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)

    Article  ADS  Google Scholar 

  21. Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  22. C. Y. Lu, X. Q. Zhou, O. Guhne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91 (2007)

    Article  Google Scholar 

  23. X. C. Yao, T. X. Wang, P. Xu, H. Lu, G. S. Pan, X. H. Bao, C. Z. Peng, C. Y. Lu, Y. A. Chen, and J. W. Pan, Observation of eight-photon entanglement, Nat. Photonics 6(4), 225 (2012)

    Article  ADS  Google Scholar 

  24. Q. Zhang, A. Goebel, C.Wagenknecht, Y. A. Chen, B. Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J. W. Pan, Experimental quantum teleportation of a two-qubit composite System, Nat. Phys. 2(10), 678 (2006)

    Article  Google Scholar 

  25. X. M. Jin, J. G. Ren, B. Yang, Z. H. Yi, F. Zhou, X. F. Xu, S. K. Wang, D. Yang, Y. F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C. Z. Peng, and J. W. Pan, Experimental free-space quantum teleportation, Nat. Photonics 4(6), 376 (2010)

    Article  ADS  Google Scholar 

  26. J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, Quantum teleportation and entanglement distribution over 100-kilometre free-space channels, Nature 488(7410), 185 (2012)

    Article  ADS  Google Scholar 

  27. J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, Experimental realization of freely propagating teleported qubits, Nature 421(6924), 721 (2003)

    Article  ADS  Google Scholar 

  28. M. Li, M. J. Zhao, S. M. Fei, and Z. X. Wang, Experimental detection of quantum entanglement, Front. Phys. 8(4), 357 (2013)

    Article  Google Scholar 

  29. X. L. Su, S. H. Hao, Y. P. Zhao, X. W. Deng, X. J. Jia, C. D. Xie, and K. C. Peng, Demonstration of eight-partite twodiamond shape cluster state for continuous variables, Front. Phys. 8(1), 20 (2013)

    Article  Google Scholar 

  30. F. L. Yan and T. Yan, Probabilistic teleportation via a nonmaximally entangled GHZ state, Chin. Sci. Bull. 55(10), 902 (2010)

    Article  Google Scholar 

  31. Z. X. Man, Y. J. Xia, and N. B. An, Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states, Eur. Phys. J. D 42(2), 333 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. D. P. Tian, Y. J. Tao, and M. Qin, Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state, Sci. China G 51(10), 1523 (2008)

    Article  Google Scholar 

  33. T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)

    Article  ADS  Google Scholar 

  34. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)

    Article  ADS  Google Scholar 

  35. B. Gu, Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics, J. Opt. Soc. Am. B 29(7), 1685 (2012)

    Article  ADS  Google Scholar 

  36. X. T. Yu, J. Xu, and Z. C. Zhang, Distributed wireless quantum communication networks, Chin. Phys. B 22(9), 090311 (2013)

    Article  ADS  Google Scholar 

  37. J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)

    Article  ADS  Google Scholar 

  38. J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, Experimental entanglement purification of arbitrary unknown states, Nature 423(6938), 417 (2003)

    Article  ADS  Google Scholar 

  39. S. Y. Zhao, J. Liu, L. Zhou, and Y.B. Sheng, Two-step entanglement concentration for arbitrary electronic cluster state, Quantum Inform. Process. 12(12), 3633 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. L. Zhou, Y. B. Sheng, W. W. Cheng, L. Y. Gong, and S. M. Zhao, Efficient entanglement concentration for arbitrary less-entangled NOON states, Quantum Inform. Process. 12(2), 1307 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)

    Article  ADS  Google Scholar 

  42. X. Yan, Y. F. Yu, and Z. M. Zhang, Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9(5), 640 (2014)

    Article  Google Scholar 

  43. K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multi-hop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89(2), 022329 (2014)

    Article  ADS  Google Scholar 

  44. X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)

    Article  Google Scholar 

  45. L. H. Shi, X. T. Yu, X. F. Cai, Y. X. Gong, and Z. C. Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B 24(5), 050308 (2015)

    Article  ADS  Google Scholar 

  46. R. Fortes and G. Rigolin, Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states, Ann. Phys. 336(9), 517 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-Chen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, PY., Yu, XT., Zhan, HT. et al. Multiple teleportation via partially entangled GHZ state. Front. Phys. 11, 110303 (2016). https://doi.org/10.1007/s11467-016-0553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0553-x

Keywords

Navigation