Skip to main content
Log in

Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

New materials for hydrogen storage of Li-doped fullerene (C20, C28, C36, C50, C60, C70)-intercalated hexagonal boron nitrogen (h-BN) frameworks were designed by using density functional theory (DFT) calculations. First-principles molecular dynamics (MD) simulations showed that the structures of the C n -BN (n = 20, 28, 36, 50, 60, and 70) frameworks were stable at room temperature. The interlayer distance of the h-BN layers was expanded to 9.96–13.59 Å by the intercalated fullerenes. The hydrogen storage capacities of these three-dimensional (3D) frameworks were studied using grand canonical Monte Carlo (GCMC) simulations. The GCMC results revealed that at 77 K and 100 bar (10 MPa), the C50-BN framework exhibited the highest gravimetric hydrogen uptake of 6.86 wt% and volumetric hydrogen uptake of 58.01 g/L. Thus, the hydrogen uptake of the Li-doped C n -intercalated h-BN frameworks was nearly double that of the non-doped framework at room temperature. Furthermore, the isosteric heats of adsorption were in the range of 10–21 kJ/mol, values that are suitable for adsorbing/desorbing the hydrogen molecules at room temperature. At 193 K (–80 °C) and 100 bar for the Li-doped C50-BN framework, the gravimetric and volumetric uptakes of H2 reached 3.72 wt% and 30.08 g/L, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414(6861), 353 (2001)

    Article  ADS  Google Scholar 

  2. J. A. Turner, A realizable renewable energy future, Science 285(5428), 687 (1999)

    Article  Google Scholar 

  3. J. A. Turner, Sustainable hydrogen production, Science 305(5686), 972 (2004)

    Article  ADS  Google Scholar 

  4. A. W. C. van den Berg, and C. O. Arean, Materials for hydrogen storage: Current research trends and perspectives, Chem. Commun. 669(6), 668 (2008)

    Article  Google Scholar 

  5. M. Felderhoff, C. Weidenthaler, R. von Helmolt, and U. Eberle, Hydrogen storage: The remaining scientific and technological challenges, Phys. Chem. Chem. Phys. 9(21), 2643 (2007)

    Article  Google Scholar 

  6. H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Côté, R. E. Taylor, M. O’Keeffe, and O. M. Yaghi, Designed synthesis of 3D covalent organic frameworks, Science 316(5822), 268 (2007)

    Article  ADS  Google Scholar 

  7. J. L. Belof, A. C. Stern, M. Eddaoudi, and B. Space, On the mechanism of hydrogen storage in a metal-organic framework material, J. Am. Chem. Soc. 129(49), 15202 (2007)

    Article  Google Scholar 

  8. S. S. Han, H. Furukawa, O. M. Yaghi, and W. A. Goddard, Covalent organic frameworks as exceptional hydrogen storage materials, J. Am. Chem. Soc. 130(35), 11580 (2008)

    Article  Google Scholar 

  9. Z. Y. Zhong, Z. T. Xiong, L. F. Sun, J. Z. Luo, P. Chen, X. Wu, J. Lin, and K. L. Tan, Nanosized nickel (or cobalt)/graphite composites for hydrogen storage, J. Phys. Chem. B 106(37), 9507 (2002)

    Article  Google Scholar 

  10. J. Jiang, R. Babarao, and Z. Hu, Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: From zeolites, metal–organic frameworks to protein crystals, Chem. Soc. Rev. 40(7), 3599 (2011)

    Article  Google Scholar 

  11. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  12. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8(10), 3498 (2008)

    Article  ADS  Google Scholar 

  13. J. Zhou, Q. Wang, Q. Sun, P. Jena, and X. S. Chen, Electric field enhanced hydrogen storage on polarizable materials substrates, Proc. Natl. Acad. Sci. USA 107(7), 2801 (2010)

    Article  ADS  Google Scholar 

  14. M. Khazaei, M. S. Bahramy, N. S. Venkataramanan, H. Mizuseki, and Y. Kawazoe, Chemical engineering of prehydrogenated C and BN-sheets by Li: Application in hydrogen storage, J. Appl. Phys. 106(9), 094303 (2009)

    Article  ADS  Google Scholar 

  15. L. P. Zhang, P. Wu, and M. B. Sullivan, Hydrogen adsorption on Rh, Ni, and Pd functionalized single-walled boron nitride nanotubes, J. Phys. Chem. C 115(10), 4289 (2011)

    Article  Google Scholar 

  16. M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, and J. Osterwalder, Boron nitride nanomesh, Science 303(5655), 217 (2004)

    Article  ADS  Google Scholar 

  17. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Twodimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)

    Article  ADS  Google Scholar 

  18. A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, and C. N. R. Rao, Graphene analogues of BN: Novel synthesis and properties, ACS Nano 4(3), 1539 (2010)

    Article  Google Scholar 

  19. J. D. Bernal, The structure of graphite, Proc. R. Soc. Lond. A 106(740), 749 (1924)

    Article  ADS  Google Scholar 

  20. D. Chung, Review graphite, J. Mater. Sci. 37(8), 1475 (2002)

    Article  ADS  Google Scholar 

  21. Y. Baskin and L. Meyer, Lattice constants of graphite at low temperatures, Phys. Rev. 100(2), 544 (1955)

    Article  ADS  Google Scholar 

  22. V. L. Solozhenko, G. Will, and F. Elf, Isothermal compression of hexagonal graphite-like boron nitride up to 12 GPa, Solid State Commun. 96(1), 1 (1995)

    Article  ADS  Google Scholar 

  23. W. Paszkowicz, J. B. Pelka, M. Knapp, T. Szyszko, and S. Podsiadlo, Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range, Appl. Phys. A 75(3), 431 (2002)

    Article  ADS  Google Scholar 

  24. A. Marini, P. Garcia-Gonzalez, and A. Rubio, Firstprinciples description of correlation effects in layered materials, Phys. Rev. Lett. 96(13), 136404 (2006)

    Article  ADS  Google Scholar 

  25. G. Kern, G. Kresse, and J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride, Phys. Rev. B 59(13), 8551 (1999)

    Article  ADS  Google Scholar 

  26. R. Pease, An X-ray study of boron nitride, Acta Crystallogr. 5(3), 356 (1952)

    Article  MathSciNet  Google Scholar 

  27. Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z.Y. Juang, M. S. Dresselhaus, L. J. Li, and J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition, Nano Lett. 10(10), 4134 (2010)

    Article  ADS  Google Scholar 

  28. S. S. Han, H. S. Kim, K. S. Han, J. Y. Lee, H. M. Lee, J. K. Kang, S. I. Woo, A. C. T. van Duin, and W. A. Goddard, Nanopores of carbon nanotubes as practical hydrogen storage media, Appl. Phys. Lett. 87(21), 213113 (2005)

    Article  ADS  Google Scholar 

  29. S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine, and G. Seifert, Graphene nanostructures as tunable storage media for molecular hydrogen, Proc. Natl. Acad. Sci. USA 102(30), 10439 (2005)

    Article  ADS  Google Scholar 

  30. W. Q. Deng, X. Xu, and N. Goddard, New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation, Phys. Rev. Lett. 92(16), 166103 (2004)

    Article  ADS  Google Scholar 

  31. M. S. Fuhrer, J. G. Hou, X. D. Xiang, and A. Zettl, C60 intercalated graphite: Predictions and experiments, Solid State Commun. 90(6), 357 (1994)

    Article  ADS  Google Scholar 

  32. V. Gupta, P. Scharff, K. Risch, H. Romanus, and R. Müller, Synthesis of C60 intercalated graphite, Solid State Commun. 131(3–4), 153 (2004)

    Article  ADS  Google Scholar 

  33. A. Kuc, L. Zhechkov, S. Patchkovskii, G. Seifert, and T. Heine, Hydrogen sieving and storage in fullerene intercalated graphite, Nano Lett. 7(1), 1 (2007)

    Article  ADS  Google Scholar 

  34. Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, and J. E. Fischer, Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage, J. Am. Chem. Soc. 127(46), 16006 (2005)

    Article  Google Scholar 

  35. S. S. Han and S. S. Jang, A hydrogen storage nanotank: Lithium-organic pillared graphite, Chem. Commun. 36(36), 5427 (2009)

    Article  Google Scholar 

  36. J. H. Guo, H. Zhang, and Y. Miyamoto, New Lidoped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage, Phys. Chem. Chem. Phys. 15(21), 8199 (2013)

    Article  Google Scholar 

  37. J. Ren, H. Zhang, and X. L. Cheng, Grand canonical Monte Carlo simulation of isotherm for hydrogen adsorption on nanoporous LiBH4, Comput. Mater. Sci. 71, 109 (2013)

    Article  Google Scholar 

  38. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)

    Article  ADS  Google Scholar 

  39. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  40. G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, J. Phys. Condens. Matter 6(40), 8245 (1994)

    Article  ADS  Google Scholar 

  41. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  42. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255 (1984)

    Article  ADS  Google Scholar 

  43. D. Frenkel and B. Smit, Understanding Molecular Simulation, Computational Science Series, San Diego: Academic Press, 2002

    Google Scholar 

  44. A. Gupta, S. Chempath, M. J. Sanborn, L. A. Clark, and R. Q. Snurr, Object-oriented programming paradigms for molecular modeling, Mol. Simul. 29(1), 29 (2003)

    Article  Google Scholar 

  45. S. L. Mayo, B. D. Olafson, and Goddard A, Dreiding: A generic force field for molecular simulations, J. Phys. Chem. 94(26), 8897 (1990)

    Article  Google Scholar 

  46. Q. Y. Yang and C. L. Zhong, Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks, J. Phys. Chem. B 109(24), 11862 (2005)

    Article  Google Scholar 

  47. G. Garberoglio, A. I. Skoulidas, and J. K. Johnson, Adsorption of gases in metal organic materials: Comparison of simulations and experiments, J. Phys. Chem. B 109(27), 13094 (2005)

    Article  Google Scholar 

  48. T. Düren, L. Sarkisov, O. M. Yaghi, and R. Q. Snurr, Design of new materials for methane storage, Langmuir 20(7), 2683 (2004)

    Article  Google Scholar 

  49. B. Assfour and G. Seifert, Adsorption of hydrogen in covalent organic frameworks: Comparison of simulations and experiments, Microporous Mesoporous Mater. 133(1–3), 59 (2010)

    Article  Google Scholar 

  50. O. Talu and A. L. Myers, Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment, AIChE J. 47(5), 1160 (2001)

    Article  Google Scholar 

  51. H. Frost, T. Düren, and R. Q. Snurr, Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks, J. Phys. Chem. B 110(19), 9565 (2006)

    Article  Google Scholar 

  52. R. Q. Snurr, A. T. Bell, and D. N. Theodorou, Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions, J. Phys. Chem. 97(51), 13742 (1993)

    Article  Google Scholar 

  53. H. Tanaka, J. Fan, H. Kanoh, H. Yudasaka, S. Iijima, and K. Kaneko, Quantum nature of adsorbed hydrogen on singlewall carbon nanohorns, Mol. Simul. 31(6–7), 465 (2005)

    Article  Google Scholar 

  54. D. Levesque, A. Gicquel, F. L. Darkrim, and S. B. Kayiran, Monte Carlo simulations of hydrogen storage in carbon nanotubes, J. Phys. Condens. Matter 14(40), 9285 (2002)

    Article  ADS  Google Scholar 

  55. P. Kowalczyk, H. Tanaka, R. Holyst, K. Kaneko, T. Ohmori, and J. Miyamoto, Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation, J. Phys. Chem. B 109(36), 17174 (2005)

    Article  Google Scholar 

  56. B. Panella, M. Hirscher, H. Pütter, and U. Müller, Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared, Adv. Funct. Mater. 16(4), 520 (2006)

    Article  Google Scholar 

  57. Y. W. Li and R. T. Yang, Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover, J. Am. Chem. Soc. 128(25), 8136 (2006)

    Article  Google Scholar 

  58. L. J. Murray, M. Dinca, and J. R. Long, Hydrogen storage in metal–organic frameworks, Chem. Soc. Rev. 38(5), 1294 (2009)

    Article  Google Scholar 

  59. S. K. Bhatia and A. L. Myers, Optimum conditions for adsorptive storage, Langmuir 22(4), 1688 (2006)

    Article  Google Scholar 

  60. K. Srinivasu, K. R. S. Chandrakumar, and S. K. Ghosh, Quantum chemical studies on hydrogen adsorption in carbon-based model systems: Role of charged surface and the electronic induction effect, Phys. Chem. Chem. Phys. 10(38), 5832 (2008)

    Article  Google Scholar 

  61. Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, Clustering of Ti on a C60 surface and its effect on hydrogen storage, J. Am. Chem. Soc. 127(42), 14582 (2005)

    Article  Google Scholar 

  62. K. L. Mulfort and J. T. Hupp, Chemical reduction of metalorganic framework materials as a method to enhance gas uptake and binding, J. Am. Chem. Soc. 129(31), 9604 (2007)

    Article  Google Scholar 

  63. D. Himsl, D. Wallacher, and M. Hartmann, Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53 (Al) structural analogue by lithium doping, Angew. Chem. Int. Ed. 48(25), 4639 (2009)

    Article  Google Scholar 

  64. Z. H. Xiang, Z. Hu, W. T. Yang, and D. P. Cao, Lithium doping on metal-organic frameworks for enhancing H2 storage, Int. J. Hydrogen Energy 37(1), 946 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Yu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YH., Zhang, CY., Ren, J. et al. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers. Front. Phys. 11, 113101 (2016). https://doi.org/10.1007/s11467-016-0559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0559-4

Keywords

Navigation